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Abstract

Machine learning models are generally complex and it is difficult to interpret the
learned parameters. It is thus hard to follow their training and behavior. It would be
great if we could understand how the model is learning from the data and making
predictions. To this effect, Koh and Liang [2017] showed how influence functions
can be used to calculate the influence of a given training point on test prediction
of a binary classification model, and reported some applications. In this work, we
extend the influence functions framework to cover more Machine Learning tasks, so
that they can be used more widely in this field to understand and improve training
and performance. We investigate how to calculate the influence of populations of
training samples, and extend the framework to regression and multi-class problems.
We also look at how we can use influence functions to train a given model better.

1 Introduction

There have been huge advances in the field of Machine Learning in recent years, particularly with the
resurgence of Deep Learning. The performance scores for lots of traditional problems like image
recognition and NLP have gone up. However, these models are very hard to interpret intuitively,
making them akin to black boxes. Lots of other Machine Learning models also have this problem of
interpretability. This limits their use in high stakes applications like health-care, where they would
otherwise be immensely helpful. It would be great if we could get some insights into what the model
learns from the data - for example, which training points are used in making a certain prediction, and
how much they influence the prediction. This kind of interpretability would also help researchers
understand their models better and potentially improve their performance.

In robust statistics, influence functions Cook and Weisberg [1982] have been traditionally used to
measure the influence of a training point on the model parameters. The influence of a point quantifies
how much the model parameters change as a training point is up-weighted by an infinitesimal amount.
However, influence functions have not found many applications in Machine Learning. Recently,
Koh and Liang [2017] used influence functions to understand the influence of the training data on
predictions of unseen test points. They looked at calculating the influence efficiently for binary
classification problems. They also looked at some applications of this, such as training set attacks
and efficient selection of crowd sourced training chunks for manual inspection.

In this project, we look at extending their work to help in other fundamental Machine Learning tasks.
We first look at the mathematical framework required to calculate the influence of populations of
training points. Koh and Liang [2017] propose this as a new direction. This is an interesting problem
to solve since it has good potential applications. It would help us understand how different training
populations affect our predictions and also give us a concrete estimate of how our predictions would
change based on the addition of new chunks of training data. Our work finds a very simple expression
for this based on the individual influences calculated in Koh and Liang [2017]. We analyze the
influence scores of a given population of training samples by checking how the prediction scores of
the model are affected. We choose the MNIST dataset for this task since the image classification task
here is quite intuitive and we can analyze influences well.
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We also investigate how we can use the work in Koh and Liang [2017] to build better prediction
models by removing bad training points. Most data-sets have some amount of noise and we believe
we can improve a model by eliminating the noisy training examples. The idea here is to calculate the
influence scores of each of the training points on an unseen representative test sample and remove the
points that consistently contribute negative influence scores for the model.

Finally, we extend the work in Koh and Liang [2017] to analyze and study regression and multi-class
problems. We modify the computation of the influence scores based on the new loss functions and try
to analyze the results on our data-sets. We choose the single dimension regression data-set provided
in assignment 1 since it is useful for our visualizations. We use MNIST again for the multi-class
problem.

The results of our work show great promise for influence functions in the field of Machine Learning.
We have shown that they work well in lots of areas in Machine Learning and can be used to understand
and improve performance.

2 Related Work

The primary motivation to study influence functions in the context of Machine Learning is to use
them for interpreting the predictions made by ML systems. However, models such as deep neural
networks are complicated and are used almost like "black boxes". There has been some work on
interpreting the predictions of deep neural networks. For example, Ribeiro et al. [2016] locally fit a
simpler model around the test point. Simonyan et al. [2013], Adler et al. [2016] perturb the test point
to see how the prediction changes. However, this has been confined to studying models with fixed
parameters and not why these parameters were learned.

Koh and Liang [2017] use influence functions to trace a model’s predictions all the way back to the
training data, which determine the model parameters. The concept of influence functions was first
introduced in statistics in the 70s and 80s by Cook and others (Cook and Weisberg [1982, 1980],
Cook [1977, 1986]). It is a classic technique from robust statistics that tells us how the model
parameters change as we upweight a training point by an infinitesimal amount. In Machine Learning
however, influence functions have seldom been used. Wojnowicz et al. [2016] use matrix sketching
to approximate Cook’s distance in generalized linear models. Cook’s distance (Cook [1977]) is
closely related to influence functions in the case of linear regression. Debruyne et al. [2008] use
influence functions for model selection for kernel based regression. They use higher order influence
functions to approximate leave one out error. Liu et al. [2014] use Bouligand influence functions to
quickly estimate cross validation error in kernel methods. Bouligand influence functions introduced
by Robinson [1991] are defined over continuous distributions, where as we only consider empirical
distributions that are discrete. Christmann and Steinwart [2004] use influence functions to study the
robustness properties of Machine Learning models that are learned by convex risk minimization.

Recently Koh and Liang [2017] used influence functions to understand the effect of training points on
the test data. They also showed several applications of influence functions including understanding
model behavior, debugging models, detecting dataset errors, and training set attacks. However, they
only investigate the influence of a single training point on test data. In our work, we investigate
population effects, i.e, the influence of a population of training points on test data. We also use
influence functions to study multi-class classification and regression problems, whereas Koh and
Liang [2017] only study binary classification. Additionally, we also show how we can use influence
functions to remove outliers and improve model accuracy.

3 Methodology

Consider a Machine Learning problem from some input space X to an output space Y . We are
given training points z1, z2, ..zn, where zi = (xi, yi). Let L(z, θ) be the loss for the point z
and parameter θ ∈ Θ. The empirical risk is 1

n

∑n
i=1 L(zi, θ). The empirical risk minimizer is

θ̂ = arg minθ∈Θ
1
n

∑n
i=1 L(zi, θ). We assume that the loss function is twice differentiable and

strictly convex in θ.
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3.1 Upweighting a training point

We re-derive the expression for the influence of upweighting a training point from Koh and Liang
[2017] for the sake of completeness. Let θ̂ε,z be the new ERM when point z is upweighted by
an infinitesimal quantity ε, i.e, θ̂ε,z = arg minθ∈Θ

1
n

∑n
i=1 L(zi, θ) + εL(z, θ) . The influence of

upweighting z on ERM parameter θ̂ is given by:

Iz,params =
dθ̂ε,z
dε

∣∣∣∣
ε=0

= −H−1

θ̂
∇θL(z, θ̂)

Here Hθ̂ = 1
n

∑n
i=1∇2

θL(zi, θ̂) is the Hessian of the empirical risk with respect to θ at θ̂. We derive
this expression here. By the definition of θ̂ε,z:

1

n

n∑
i=1

∇θL(zi, θ̂ε,z) + ε∇θL(z, θ̂ε,z) = 0

=⇒
(

1

n

n∑
i=1

∇2
θL(zi, θ̂ε,z)

)
dθ̂ε,z
dε

+∇θL(z, θ̂ε,z) + ε∇2
θL(z, θ̂ε,z)

dθ̂ε,z
dε

= 0

=⇒ dθ̂ε,z
dε

= −
(

1

n

n∑
i=1

∇2
θL(zi, θ̂ε,z) + ε∇2

θL(z, θ̂ε,z)

)−1

∇θL(z, θ̂ε,z)

=⇒ dθ̂ε,z
dε

∣∣∣∣
ε=0

= −
(

1

n

n∑
i=1

∇2
θL(zi, θ̂)

)−1

∇θL(z, θ̂) = −H−1

θ̂
∇θL(z, θ̂)

Now we apply the chain rule to derive the expression for the influence of upweighting z on the test
point ztest.

Iz,loss(z, ztest) =
dL(ztest, θ̂ε,z)

dε

∣∣∣∣
ε=0

= ∇θL(ztest, θ̂)
> dθ̂ε,z

dε

∣∣∣∣
ε=0

= −∇θL(ztest, θ̂)
>H−1

θ̂
∇θL(z, θ̂)

3.2 Upweighting a population of training point

Let θ̂ε,Z be the new ERM when the points z ∈ Z are upweighted by an infinitesimal amount ε, i.e,
θ̂ε,Z = arg minθ∈Θ

1
n

∑n
i=1 L(zi, θ)+ε

∑
z∈Z L(z, θ). The influence of upweighting the population

Z on the parameter θ̂ is given by:

IZ,params =
dθ̂ε,Z
dε

∣∣∣∣
ε=0

= −H−1

θ̂

(∑
z∈Z
∇θL(z, θ̂)

)
The derivation is similar to the case of upweighting a single point. By definition of θ̂ε,Z :

1

n

n∑
i=1

∇θL(zi, θ̂ε,Z) + ε
∑
z∈Z
∇θL(z, θ̂ε,Z) = 0

=⇒
(

1

n

n∑
i=1

∇2
θL(zi, θ̂ε,Z)

)
dθ̂ε,Z
dε

+
∑
z∈Z
∇θL(z, θ̂ε,Z) + ε

(∑
z∈Z
∇2
θL(z, θ̂ε,Z)

)dθ̂ε,Z
dε

= 0

=⇒ dθ̂ε,Z
dε

= −
(

1

n

n∑
i=1

∇2
θL(zi, θ̂ε,Z) + ε

∑
z∈Z
∇2
θL(z, θ̂ε,Z)

)−1(∑
z∈Z
∇θL(z, θ̂ε,Z)

)
=⇒ dθ̂ε,Z

dε

∣∣∣∣
ε=0

= −
(

1

n

n∑
i=1

∇2
θL(zi, θ̂)

)−1(∑
z∈Z
∇θL(z, θ̂)

)
= −H−1

θ̂

(∑
z∈Z
∇θL(z, θ̂)

)
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We can apply the chain rule to derive the expression for the influence of upweighting population Z
on a test point ztest

IZ,loss(z, ztest) =
dL(ztest, θ̂ε,Z)

dε

∣∣∣∣
ε=0

= ∇θL(ztest, θ̂)
> dθ̂ε,Z

dε

∣∣∣∣
ε=0

= −∇θL(ztest, θ̂)
>H−1

θ̂

(∑
z∈Z
∇θL(z, θ̂)

)
3.3 Influence in Linear regression models

In the case of linear regression, we can derive closed form expressions for Influences. The
loss function is the squared loss 1

n

∑n
i=1(θ>xi − yi)

2. Its derivative is 1
n

∑n
i=1(θ>xi − yi)xi

and its Hessian is 1
n

∑n
i=1 xix

>
i . We know that the empirical risk minimizing parameter is

θ̂ = (
∑n
i=1 xix

>
t )−1(

∑
i=1 xiyi).

Iz,params = −H−1

θ̂
∇θL((x, y), θ̂) = −(

1

n

n∑
i=1

xix
>
i )−1(θ̂>x− y)x

Iz,loss(z, ztest) = −∇θL((xtest, ytest), θ̂)
>H−1

θ̂
∇θL((x, y), θ̂)

= ((θ̂>xtest − ytest)xtest)>(
1

n

n∑
i=1

xix
>
i )−1((θ̂>x− y)x)

In many cases, the Hessian may be singular and the inverse will not exist. We add a regularization
term to the loss function in order to make the Hessian non-singular. The loss function then becomes
1
n

∑n
i=1(θ>xi − yi)

2 + λ
nθ
>θ. Its derivative is 1

n

∑n
i=1(θ>xi − yi)xi + λ

nθ and its Hessian is
1
n

∑n
i=1 xix

>
i + λ

nI . The Hessian would always be full rank when λ > 0. We still have a closed for
expression for the empirical risk minimizing parameter θ̂ = (

∑n
i=1 xix

>
t + λI)−1(

∑
i=1 xiyi).

Iz,params = −H−1

θ̂
∇θL((x, y), θ̂) = −(

1

n

n∑
i=1

xix
>
i +

λ

n
I)−1((θ̂>x− y)x+ λθ̂)

Iz,loss(z, ztest) = −∇θL((xtest, ytest), θ̂)
>H−1

θ̂
∇θL((x, y), θ̂)

= ((θ̂>xtest − ytest)xtest + λθ̂)>(
1

n

n∑
i=1

xix
>
i +

λ

n
I)−1((θ̂>x− y)x+ λθ̂)

3.4 Efficiently Calculating Population Influence

We face similar computational challenges as addressed in Koh and Liang [2017]. We need to be
able to compute −∇θL(ztest, θ̂)

>H−1

θ̂

(∑
z∈Z ∇θL(z, θ̂)

)
efficiently. If we have n data points and

θ ∈ Rp, forming and inverting the Hessian matrix directly requires O(np2 + p3) operations. This
becomes prohibitively expensive for large models such as neural networks.

To overcome this, we use implicit Hessian-vector products (HVPs) to efficiently approximate stest =

H−1

θ̂
L(ztest, θ̂) and then compute −stest ·

(∑
z∈Z ∇θL(z, θ̂)

)
. This allows us to precompute stest

for each test point of interest and then efficiently compute −stest · ∇θL(z, θ̂) for each training point
z ∈ Z. Then we can add the individual influences to obtain the influence of the population Z.

Like in Koh and Liang [2017], we first use the Pearlmutter [1994] trick to compute the Hessian
vector product. Then we can either use Conjugate gradients(Martens [2010]) or Stochastic Estima-
tion(Agarwal et al. [2017]) to calculate the inverse hessian vector product stest. We use tensorflow to
implement these approximations.
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4 Data sets

We used two data-sets to support our experiments. MNIST was our primary data-set, which we
modified to fit the purpose of each of the experiments. The other dataset is the regression data-set
given to us in Assignment 1 Question 3.

For the influence of populations experiment, we used a reduced MNIST data-set consisting of only
digits 1 and 7. We used a novel signal processing approach (described in detail in the next section) to
split the 7s based on their style: 7s with a line through the middle and just plain 7s

For the multi-class experiments, we used the full MNIST data-set. The idea was to check if we could
interpret the influence of data points from multiple classes on a given test sample.

The regression model experiment made use of the data-set from Assignment 1 Question 3. We wanted
to be able to visualize the influence scores and the behavior of the model and the outliers, so we
decided to go with a reduced 1 dimensional data-set. It is easy to see how the results would generalize
over higher dimensions.

Finally, for the model improvement experiments, we decided to go with MNIST data-set again but
with reduced versions of 2 classes. We wanted to run multiple experiments and get quick results
without any GPU access, so we reduced the data-set to decrease the number of parameters and help
speed up the training and computation of the hessian. For our experiments, we wanted to pick classes
that were visually similar, so we chose 1 and 7 for one set of experiments and 4 and 9 for another.

5 Experiments

5.1 Influence of populations

We need to validate our expression for the influence of a population of samples on a given test case.
We set up our experiments so that we can correlate the influence of a population to the probability
score for predicting the test sample label. We want to show that the influence score is what we claim
it to be: a measure of the sign and magnitude of how the population affects the probability score for
the model’s test label prediction. If a population has a huge positive influence score, removing those
samples from training would decrease the confidence of the model in making the correct test label
prediction. We should get a lower probability score for the sample prediction if we retrain the model
with the partial data-set. Similarly, if a population has a huge negative score, removing the constituent
samples should increase the probability score. If a population has a very low absolute influence score,
we expect the probability score to change much less upon retraining without the population.

Our data-set consists of images of 1s and 7s, extracted from the full MNIST dataset. To pick a
population that allows us to also make intuitive arguments, we chose the images of 7s that are
all written with a dash through the middle. We describe how we do this in section 5.1.1. This
sub-population of images contains 7s that are visually distinct from all the other normal 7s. We want
to see if this population contributes positively or negatively in correctly predicting a test image of a
normal 7 without any line. The answer is not straightforward since we don’t know if a visually distinct
training sample would confuse or reinforce the model. We repeat this experiment with different test
images of 7s and try to explain how the influence scores help in understanding the model.

Apart from understanding positive influence scores, we also want to validate our potential negative
scores. So we use Koh and Liang [2017] to pick a population of samples that have negative influence
scores below a threshold for a certain test sample. We call this the bad population, with a cumulative
negative influence on the test prediction. We want to show that the probability score for the correct
test label increases when we remove this population and retrain the model.

5.1.1 Picking the population of dashed 7s

MNIST does not have information about the types of images. It only contains the labels. We are
hence left with an unsupervised learning problem of clustering the data based on the style of the digit.
This isn’t a trivial problem.

The basic idea we use here is to detect how many horizontal lines are in each image. If there is just
one, we know that it is a normal 7. For the dashed 7, we would get two lines. We have a 28x28
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input feature set for each image and we need to find the number of lines from this. We do this by
first summing the pixel intensities along the x-axis so that we get a cumulative intensity score for
at each vertical coordinate. When we plot this data, we expect to see something resembling peaks
where there are horizontal lines. We use techniques from signal processing to smoothen and amplify
this plot and use a peak finding algorithm to detect peaks. Specifically, we project the image on
its vertical axis to obtain a 1-d signal and smooth it using a Gaussian kernel. Then we use a peak
finding procedure, scipy.signal.argrelextrema which finds relative peaks in a 1-d signal to
find the number of peaks. We then extract out all the images containing two peaks as our dashed 7s
population. Note that this is only an effective approximation since some badly written 7s can also
throw out two peaks. We get around 650 images from this and we manually verified them to make
sure that there are very few false positives.

(a) (b)

Figure 1: (a) 7 without a dash has 1 peak in its signal (b) 7 with a dash has 2 peaks in its signal. We
plot the signal vertically to align it with the 7s.

5.2 Influence in regression models

For classification models, we can use the sign of the influence score as an indicator of whether the
training sample has a good or bad influence on the prediction. In a regression framework, we want
to understand how to interpret these scores. We would intuitively expect the influence score of a
training sample to indicate whether the sample contributes to moving the regression line towards the
test output or away when it is removed from the training set. We run experiments to compare these
numbers.

For our experiments, we modified the standard linear regression loss function to always have a
regularization term. If this term isn’t present, the Hessian matrix would become singular, making it
impossible for us to compute the inverse and hence the influence scores.

Apart from this, we also investigate how we can use these influence scores in outlier detection and
learning robust models. With a mean squared error or similar loss functions, we always get a negative
score for influence of a point from our equation.

L =
1

n

n∑
i=1

(θ>xi − yi)2 +
λ

n
θ>θ

∇θL =
2

n

n∑
i=1

(θ>xi − yi)xi +
2λ

n
θ

H = ∇2
θL =

2

n

n∑
i=1

(xix
>
i ) + +

2λ

n
I

Assuming the Hessian is positive semi-definite, we have influence Iz,z = −∇θL(z)>H−1∇θL(z).
Since the same gradient terms is used on both sides, we have a positive sign and an overall negative
sign on the expression.

We expect to have slightly negative influence scores for points around the regression line, and highly
negative influence scores for ones that are far away owing to their huge contribution to the loss that
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affects the parameters. We can use this to infer how ’normal’ a training point is in training the model
and detecting outliers. For detecting outliers, we basically need to use a threshold influence score.
We get this by plotting a smoothed histogram of all influence scores and choosing a value after the
first apparent peak, which contains the normal points. The remaining values would all be from the
outliers. We exclude the outliers found using this method from training and retrain the model.

5.3 Influence in multi-class models

Koh and Liang [2017] looked at calculating influence in binary classification problems. We run
experiments that calculate influence in multi-class classification problems. We choose the full MNIST
data-set for this experiment, making it a 10-class classification problem. We adapt the code-base
from Koh and Liang [2017], using the same base parameters. Just as Koh and Liang [2017] used
scikit-learn’s Logistic Regression Pedregosa et al. [2011] for binary classification, we use the same
function for multi-class classification, setting it to use cross-entropy loss and L-BFGS solver.

For each class, we manually choose one data case from the test set, selecting an image that is
unambiguously in that class. We basically pick a well written digit of each class as our test sample
for that class. We train our model and then calculate the influence of each of the training cases in
MNIST on our selected test cases. We also calculate the Euclidean distance of each of the training
cases from the test case.

We expect that training cases in the same class and that are closer in distance to the test case will
have more positive influence on that test case, as they reaffirm its label. On the other hand, we expect
that training cases in the same class and that are farther in distance to the test case will have more
negative influence on that test case, as they confuse its label. We also expect that training cases in any
of the other classes that are closer in distance to the test case will have more negative influence on
that test case, as they go against its label.

5.4 Building better models using influence scores

In an attempt to build a better performing model, we hypothesize that we can remove training
cases that consistently contribute negative influence scores for the model. These negative influence
contributors would most likely be noisy training cases in our data-set. Thus, eliminating the noise in
our data-set would improve our model. We look at the binary classification case, using two selected
classes of the MNIST data-set. Specifically, we perform experiments with 1s and 7s and then 4s and
9s.

To find the training points to remove, we perform three-fold cross validation on our training data,
where our folds are of the same size. Each fold is put aside as a validation set while we train our
model using the other two folds. Since calculating the influence of our training cases on each of
the data cases in our validation set would be too computationally expensive, we devise a method of
selecting one data case from each class in the validation set for our calculations. We want this data
case to be the most representative of the class in the validation set. So, for each class in the validation
set, we use scikit-learn’s K-means Clustering with one cluster and cluster the data cases in that class.
We then find the data case closest to the center of the cluster and calculate the influence of the training
cases on that data case.

Each training data case will have a set of influence scores as a result of the cross validation. We
devise three heuristics for determining whether to remove the training data case. The first heuristic is
to only keep training cases whose influence score set contains positive values. For the next heuristic,
we only keep training cases whose influence score set sums to a positive value. The final heuristic is
to only keep training cases whose influence score set contains values that are not all negative. The
idea behind these heuristics is to hone in on which training cases are bad and should be removed in
order to get a better model.

6 Results

6.1 Influence of populations

We used two test images to calculate our sample population influences. The influence function
framework is independent of the type of Machine Learning model we choose. We went with scikit-

7



learn logistic regression model Pedregosa et al. [2011] to train our initial model to distinguish 1s
from 7s since we get a pretty good accuracy score with very fast training. The overall model accuracy
on the MNIST test data of 1s and 7s is 0.9912. We then calculate the influences with this model’s
parameters and loss function.

(a) (b) (c) (d)

Figure 2: (a) The first image used for the experiments. (b) A sample image from the ’bad points’
population for image 1. (c) The second image used for the experiments. (d) A sample image from the
’bad points’ population for image 2.

Table 1: Influence of populations on Image 1
Population Influence Probability score with population Probability score without the population

Dashed 7s 595.34 0.6327 0.5768
Bad points -583.95 0.6327 0.6651

The first test image has a very small top line for the 7, making it almost look like a 1. We find that the
population of dashed 7s contributes a huge positive influence score in making the right prediction
in this case. We then removed this population from the training set and retrained the model. We
observed that there was a significant drop in the probability score, supporting the prediction made
from the influence score that the population of dashed 7s indeed helps the model classify the given
test case better.

For selecting the ’bad points’ population, we used a threshold of half of the most negative influence
in the training set which turned out to be -28.24. We found 15 such images from both classes with a
big net negative influence score. An image from this set is shown in Figure 2. It’s a 7 that almost
looks like a 1. Re-training the model without these 15 images gave us a significant increase in the
probability score for making the same prediction for this image. This works according to our claims
about the behavior of a negatively influencing population of points.

Table 2: Influence of populations on Image 2
Population Influence Probability score with population Probability score without the population

Dashed 7s 3.70 0.9959 0.9949
Bad points -5.26 0.9959 0.9963

The second test image is a pretty good looking 7. So the population of dashed 7s has a very small
positive influence score. We tried to find the reason for this by looking at some of the negatively
influencing points from the ’bad points’ population and we see that they contain a fair number of
dashed 7s. It looks like the population on the whole contributes slightly positively in making the
correct prediction but this contribution pales in comparison to what the same population contributes
when the test image almost looks like a 1.

The ’bad points’ population for this image consisted of 5 points below a threshold score of -0.68. This
contributes a very small negative term and we find that the probability score also decreases very little.
It looks like a good test image for 7 is not not greatly affected but any particular chunk of training
data hugely since the model is trained well and can predict from all the remaining training examples.

Based on our results from this experiment, we have empirical proof that our expression for influence
of a sample population is correct and helps us interpret the model’s behavior intuitively.
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6.2 Influence in regression models

We plot the training data with the input dimension on the x-axis and the output on y-axis. We want to
understand what we can interpret from the sign of the influence scores on a certain test point, so we
color code the influence of points by their color. We repeat this experiment for different test points in
different places on the graph to see if we could find patterns and interpret what was going on. From
the plots, we couldn’t really interpret these values. The sign of the influence values seems to be
dependent on which side of the line the training point is with respect to the test point, and also how
far the test point itself is from the regression line.

The outliers however always seem to contribute a very high absolute score. We used this to build a
model which ignores these outliers and builds a robust model.

(a) (b)

(c) (d)

Figure 3: Model regression line and influence scores for the training points on different test points.
The red dot in each graph corresponds to the test point on which the influence scores are calculated.

To build the robust model, we calculate the influence of each training point on itself. We explained
earlier how we always get negative scores for this. We want to pick a threshold to remove all points
below that threshold and retrain the model to see the new regression line. To do this, we bin the
influence scores and plot a histogram of the influences. We can detect two peaks in this graph,
one corresponding to the normal points and the other corresponding to the outliers. We choose a
value somewhere in between these peaks as the threshold so that all the outliers can be ignored. We
observed that the result line was robust to the outliers.

We observed that the influence score seemed to have a correlation with the distance of the predicted
outputs from the regression line or the error in prediction. We plotted a graph with the error on x-axis
and the influence score and we saw a good correlation.

Standard robust linear regression techniques give us a similar result but we have to set the hyper-
parameters optimally to make the model work well. In our approach, we need to set the threshold
parameter too but it is more or less straightforward after calculating the influence scores and plotting
the histogram once instead of doing a grid-search over hyper-parameters. Overall, it looked like
influence functions corroborate a lot of existing techniques in regression models but they don’t
provide anything completely new or interpretable. All our results and plots are documented in figures
3 and 4.
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(a)

(b) (c)

Figure 4: (a) Regression lines and influence score of the training points. (b) Histogram of influences
with a bin size of 1000. We pick -5000 as our threshold since the data is split at that point (b) Graph
showing the relationship between our influence score and the absolute error.

6.3 Influence in multi-class models

For the experiment detailed in section 5.3 and for each test case we selected from each class, we look
at the influence scores of the training cases on that test case against the Euclidean distances from the
test case. As expected, the more positive influence training cases are those from the same class as the
test case and fairly close in distance to the test case. It is interesting to note, though, that the training
cases with the most positive influence are generally not the closest in distance to the test case. When
looking at training cases that have the most negative influence on the test case, the data case is not
always in the same class as the test case. It may be the instance that the training case with the most
negative influence on the test case is in a different class but the image is somewhat close in distance
to the test case, making it confusing for the model to classify the test case correctly.

In figure 5, we see that the most negative influence training case on a test case in class 0 is also in
class 0. Our selected test case was an unambiguous 0, while the resultant negative influence training
case is a 0 that does not closely resemble our test case and is even difficult to make out as a 0 at first
glance.

In figure 6, we see that the most negative influence training case on a test case in class 1 is in class 7.
At a glance, the resultant negative influence training case could either be a 7 or a 1. Thus, since it is
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Figure 5: plot of influence scores against Euclidean distance on a test case in class 0. The most
negative influence training case is also in class 0, circled and shown above. It is far in distance from
the test case and does not closely resemble our 0 test case.

close in distance to our test case, it contributes negatively to the classification of the test case since its
label goes against the test’s label.

In figure 7, we see that the most negative influence training case on a test case in class 5 is in class
8. The negative influence training case does not look like an 8, as its top loop is not complete. The
training case could conceivably be a 5, although it is a stretch. Therefore, since it is somewhat close
in distance to our test case, it contributes negatively to the classification of the test case since its label
goes against the test’s label.

Overall, we see that the work of Koh and Liang [2017] can be extended to multi-class classification
for MNIST to yield influence scores on test cases that are intuitive at a closer look.

6.4 Building better models using influence scores

For the experiments and heuristics detailed in section 5.4, the results are not very promising. We
used binary classification on the MNIST data-set, with one experiment choosing only 1s and 7s and
another experiment choosing only 4s and 9s.

Table 3: Building Better Model Experiment: 1 and 7
Heuristic # Training Cases Test Accuracy

All Training Cases 11894 0.9912
Only Positive Training Cases 1003 0.9824
Sum is Positive Training Cases 4684 0.9838
Not All Negative Training Cases 7368 0.9921
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Figure 6: plot of influence scores against Euclidean distance on a test case in class 1. The most
negative influence training case is in class 7, circled and shown above. It is close in distance from the
test case and closely resembles our 1 test case, as this 7 looks like a 1.

When using only 1s and 7s, we found that that removing training cases based on our heuristics only
yielded better accuracy on the MNIST test set when we kept training cases whose influence score set
contained values that were not all negative, as detailed in table 3. The test accuracy when we use
all 11894 training cases is 0.9912 as opposed to a test accuracy of 0.9921 when using 7368 training
cases that are not all negative in their score sets. This is a significant result since we manage to filter
out 4526 training cases, or roughly 38 percent of the training set, and achieve better test accuracy
than if we had not done any filtering. Thus, we might be doing what we set out to, which is filtering
out the noise in our training set in order to achieve a better performing model.

Table 4: Building Better Model Experiment: 4 and 9
Heuristic # Training Cases Test Accuracy

All Training Cases 10761 0.9663
Only Positive Training Cases 1064 0.9191
Sum is Positive Training Cases 4928 0.9468
Not All Negative Training Cases 8287 0.9638

When using only 4s and 9s, we found that that removing training cases based on our heuristics did not
yield better accuracy on the MNIST test set and in fact produced worse test accuracies, as detailed
in table 4. These unfruitful results lead us to believe that we may want to amend our process of
selecting a single test case in cross validation to using the entire cross validation set. This would
require more computation power, but may be worth it since our single test case chosen probably is
not very indicative of the cases we would come across in the MNIST test set.
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Figure 7: plot of influence scores against Euclidean distance on a test case in class 5. The most
negative influence training case is in class 8, circled and shown above. This 8 can conceivably look
like a 5, although is not very close in distance to the test case.

7 Discussion and Conclusions

Koh and Liang [2017] came up with a very important method for interpretability in Machine Learning
models using influence functions. Their work has shown how we can efficiently calculate these values
and also analyzed the results and correctness using binary classification examples. They mentioned
some future directions for their work and also expressed their idea to see influence functions being
used as an elementary tool to create, learn, understand, and improve Machine Learning models.

In this work, we pick up from their future work section. We derive a closed form expression to
calculate the influence of a population of samples and analyze its correctness by testing on a reduced
2-class MNIST dataset. To pick intuitive populations of samples for us to better understand our
estimates, we came up with ways to split the digits based on analysis of the handwriting.

To broaden the use of influence functions in Machine Learning, we also extended the ideas in Koh and
Liang [2017] to multi-class and regression problems. We modified the loss functions in regression
problems to ensure the influence could always be computed, and interpreted the results. We look at
calculating the influence of a point on the model and compare this to the behavior of outliers. We
always get negative influence scores for the training cases on themselves in regression models. So we
look at the magnitude of the influence score which gives us how badly a particular point behaves in
training a model and this helps us build models that are robust to outliers.

We also test the performance of influence functions in a multi-class setting. We modify the required
computations based on the new multi-class cross-entropy loss function and try to interpret the
influence scores we get for the training set using the full MNIST data-set. We got very intuitive
results which validates the use of influence functions here. For example, we found that the most
negatively contributing training image for predicting that a given test image is 1 is a training image
for 7 which almost looks like a 1.
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Finally, we try to use this influence framework to investigate how to build a better prediction model.
The core idea is to remove training points which contribute negatively to the mode making good
predictions and re-train the model on a noise-free training data-set. We have proposed multiple
heuristics to choose these good points and tested them on a reduced MNIST data-set for binary
classification. The results are not very promising but we explained our ideas and future directions for
this. We believe our idea of picking the good test samples to calculate the influences of the training
samples is a little lacking. So we could have removed training points that might potentially contribute
positively towards other unseen test samples. With more computation power, we could calculate the
influence scores for a more representative population and then try weeding out the bad points.

We believe this influence function framework is greatly useful to understand model behavior in
Machine Learning. It would help new-comers get a better idea of what’s happening, and seasoned
researchers improve their models and build more complex ones without worrying too much about
"black-boxifying" them. It would also be a proponent for employing Machine Learning models in
high-risk tasks like health-care and mentioned earlier. We believe our work has helped improve the
reach of this framework to cover more Machine Learning tasks.
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