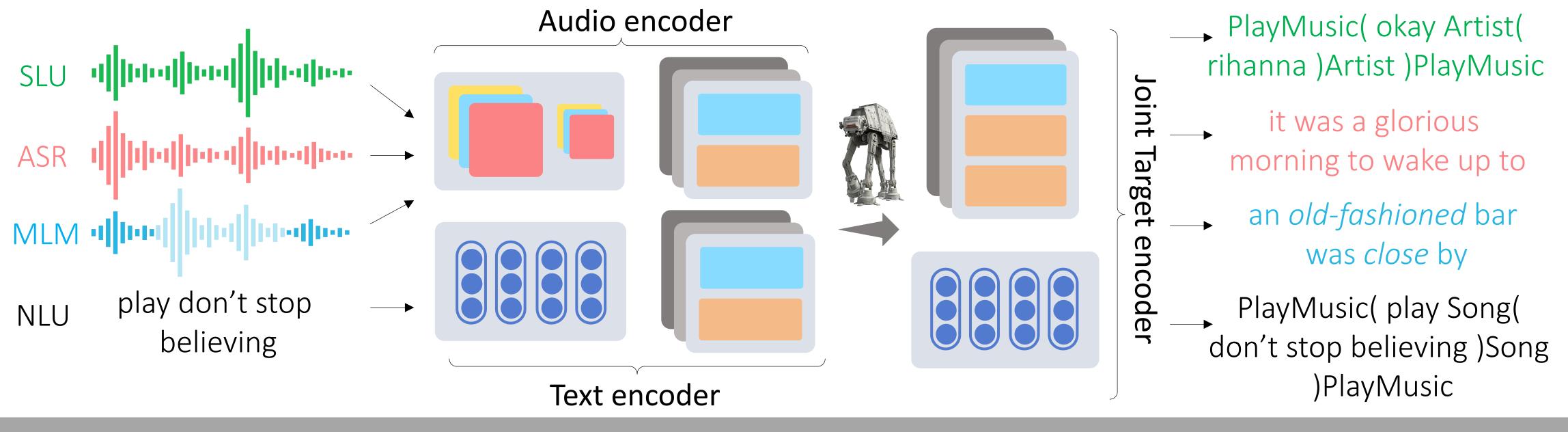

EXPLORING TRANSFER LEARNING FOR E2E SPOKEN LANGUAGE UNDERSTANDING Subendhu Rongali*, Beiye Liu, Liwei Cai,


Konstantine Arkoudas, Chengwei Su, Wael Hamza

Alexa Al New York, *University of Massachusetts Amherst

PROBLEM STATEMENT

OUR APPROACH: AT-AT (AUDIO-TEXT ALL-TASK) TRANSFORMER

KEY POINTS

• Audio is processed as log-filterbank fts (80 dim).

- Audio encoder consists of a 2L 2D conv net embedder and a 12L transformer encoder.
- Text encoder is BERT-base-uncased (768 dim, 12L).
- Decoder consists of a tied target embeddinggenerator block, and a 6L transformer decoder.
- Label smoothing, Noam scheduler, Beam decoding.

DISCUSSION

- The task is passed as <BOS> token for decoding.
- AT-AT is similar in spirit to Google's T5 [Raffel et al. 2019], a Seq2Seq text-text multi-task model.
- We beat an E2E model trained on 10% data by using other ASR transcriptions., and an E2E model trained on 100% data by using data from LibriSpeech.
- We improve upon the SOTA performance on the

RESULTS

Model	ER	EM Acc
Alexa Music Data		
E2E Model (10% data)	27.86	55.99
E2E Model (100% data)	19.23	67.81
AT-AT (10% + Music ASR)	20.68	66.32
AT-AT (100% + LibriSpeech ASR)	18.07	69.20
FluentSpeech		
SOTA [Lugosch et al. 2019]	1.2	98.8
E2E Model	9.3	91.7
AT-AT (+LibriSpeech/Music data)	0.5	99.5
Facebook TOP (Zeroshot)		
E2E Model (synthetic audio)		69.19
AT-AT (only text)		51.54
AT-AT (text + synthetic audio)		70.60

- external FluentSpeech and SNIPS datasets.
- These improvements can be attributed to our model learning a better distribution over the English language during ASR.
- AT-AT can perform zeroshot E2E learning both with and without access to a TTS system. It achieves SOTA results on the Facebook TOP dataset.

REFERENCES

- A Comparative Study on Transformer vs RNN in Speech Applications. Karita et al 2019. arXiv:1909.06317v2 [cs.CL]
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Raffel et al. 2019. arXiv:1910.10683v2 [cs.LG]
- Speech Model Pre-training for End-to-End Spoken Language Understanding. Lugosch et al. 2019. arXiv:1904.03670v2 [eess.AS]