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ABSTRACT

LOW RESOURCE LANGUAGE UNDERSTANDING IN
VOICE ASSISTANTS

SEPTEMBER 2022

SUBENDHU RONGALI

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY MADRAS

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

Voice assistants such as Amazon Alexa, Apple Siri, and Google Assistant have

become ubiquitous. They rely on spoken language understanding, which typically

consists of an Automatic Speech Recognition (ASR) component and a Natural Lan-

guage Understanding (NLU) component. ASR takes user speech as input and gener-

ates a text transcription. NLU takes the text transcription as input and generates a

semantic parse to identify the requested actions, called intents (play music, turn on

lights, etc.) and any relevant entities, called slots (which song to play? which lights

to turn on?).

These components require massive amounts of training data to achieve good per-

formance. In this dissertation, I identify and explore various data-related challenges

to improve language understanding in voice assistants, specifically, the NLU compo-

nent and the pipelined ASR-NLU architecture.

I first present a state-of-the-art NLU system based on sequence-to-sequence neural

models that simplifies the traditional semantic parsing architecture, while also allow-
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ing it to handle complex user utterances consisting of multiple nested intents and

slots. This work serves as an anchor for future data-constraint work. Next, I present

an architecture to completely replace the pipelined ASR-NLU system with a fully

end-to-end system. Our system is jointly trained on multiple speech-to-text and text-

to-text tasks, allowing for transfer learning and also creating a shared representation

for both speech and text. It outperforms previous pipelined and end-to-end systems,

and performs end-to-end semantic parsing on a new domain by only training on a

few text-to-text annotated NLU examples. Finally, I demonstrate how to train large

sequence-to-sequence NLU systems using a handful of examples by using auxiliary

tasks to pre-train various components of the system.

In upcoming work, I propose to explore the paradigm of universal semantic pars-

ing, especially zero-shot domain adaptation. The task of zero-shot domain adaptation

aims to parse utterances from a new domain using only documentary information

about the new domain but without any additional training data. I propose multiple

research directions to build models that can perform zero-shot semantic parsing on

a new domain in a fast and efficient manner. I present initial results from this work

and describe a research plan to address remaining challenges.
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CHAPTER 1

INTRODUCTION

Adoption of intelligent voice assistants such as Amazon Alexa, Apple Siri, and

Google Assistant has increased dramatically among consumers in the past few years:

as of early 2019, it is estimated that 21% of U.S. adults own a smart speaker, a 78%

year-over-year growth [55]. Latest data shows that there are 4.2 billion digital voice

assistants worldwide, with the market valued at $10.7 billion [32].

The core intelligence that helps voice assistants function comes from the system

that enables them to understand and interpret spoken language. This language under-

standing system is built to take user speech as input and parse it into an interpretable

logical form that captures the semantics of the user request: the actions requested by

the user (play music, turn on lights etc.), called intents, as well as any entities that

further refine the action to perform (which song to play? which lights to turn on?),

called slots.

In current voice assistants, the language understanding system is build as a two-

stage pipeline. The first stage is Automatic Speech Recognition (ASR), where user

speech is transcribed into a text utterance. The second stage is Natural Language

Understanding (NLU), where the text transcription is parsed into the logical form.

Figure 1.1 shows this process in detail along with an example text utterance and

logical form.

Several advances in ASR and NLU research have contributed to the success of voice

assistants and their usability. In NLU particularly, there has been a lot of work in

building systems for the style of semantic parsing describe above, referred to as task-
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ASR NLUHow far is the coffee shop

(user speech) (text transcription) (semantic parse)

Intent: Get distance [
Slot: Destination [

Intent: Get restaurant location [
Slot: Food type [ coffee ] ] ] ]

Figure 1.1. Two-stage pipelined ASR-NLU architecture for language understanding
in voice assistants. ASR transcribes user speech into text and NLU parses the text
into an actionable logical form.

oriented semantic parsing. Current semantic parsing models perform remarkably well

after being trained on large amounts of annotated data consisting of user utterances

and logical forms. Data annotation is typically a product of extensive manual effort

from many crowd workers, making it expensive and time-consuming.

Despite advances, current ASR and NLU systems, and consequently the two-

stage voice assistant pipeline, remain extremely data dependant. NLU models still

require thousands of annotated examples to achieve good performance. In addition,

converting the two-stage pipeline to a single, potentially more efficient, end-to-end

model that takes speech as input and produces the logical form is held back to due

to data constraints. Further, to increase a voice assistant’s capabilities by adding

new domains to its capabilities, we require lots of annotated data in the new domain.

This task, referred to as domain adaptation, could also potentially entail retraining

the whole system.

In this dissertation, I explore how to build good language understanding systems

for voice assistants in low-resource settings i.e. with very few annotated examples

(few-shot) or no annotated examples (zero-shot).

I first present a state-of-the-art NLU system for task-oriented semantic parsing

based on sequence-to-sequence models. This system simplifies traditional semantic

parsing architectures that consist of structured generation components by converting

the parsing problem it into a sequence-to-sequence task. It hence allows us to seam-
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lessly harness the power of large pre-trained language models and provide a base for

efficient transfer learning for future low-resource semantic parsing work. Chapter 2,

adapted from our published work [69], describes this work in detail.

Next, I present a fully end-to-end language understanding system to replace the

two-stage ASR-NLU pipelined architecture in voice assistants. A fully end-to-end

system has a number advantages over the two-stage system such as improved latency,

minimal error propagation, and better end-to-end model optimization. It was however

not previously explored due to the amount of annotated end-to-end data that would

be required to get it to work well. Our system, which we call Audio-Text All-Task

(AT-AT), is built to jointly train on multiple speech-to-text and text-to-text tasks,

allowing it to learn from existing ASR and NLU data in addition to any annotated

end-to-end data. Apart from transfer learning, our model is also built to construct a

shared representation for speech and text, allowing it to be trained with a few text

examples to bootstrap an end-to-end model for a new task or domain. Details of

the AT-AT model and demonstration of its ability to perform end-to-end semantic

parsing are described in Chapter 3, adapted from our published work [68].

In Chapter 4, I present how to train semantic parsers with very little data i.e.

fewer than 50 annotated examples. Our architecture harnesses the power of transfer

learning by training various components of the parsing model using easily-available

auxiliary tasks. It also leverages ideas from recent semantic parsing work that converts

the target logical form into a controlled natural language fragment of text, from which

the logical form can be trivially extracted, before training the parsing model. This

naturalization of the logical form helps us better incorporate pre-trained language

models that also contain a pre-trained decoder and amplify transfer learning from

auxiliary tasks. This chapter is adapted from our previously published work [67].

I describe proposed upcoming work in Chapter 5. I propose to explore the prob-

lem of low-resource NLU domain adaptation, which is a first step towards universal
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semantic parsing. My proposed approaches aim to tackle domain adaptation in the

zero-shot setting. Specifically, given an existing model and annotated training data

for some known domains, we aim to parse utterances from a new domain using only

documentary information about the new domain but without any additional training

data. Our proposed models are built on our past work on sequence-to-sequence mod-

els and auxiliary task transfer learning and are designed to be fast and efficient. I

present initial results from this work and describe a research plan to address remaining

challenges.
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CHAPTER 2

A STATE-OF-THE-ART NATURAL LANGUAGE
UNDERSTANDING SYSTEM FOR SEMANTIC PARSING

2.1 Introduction

Traditional approaches for task-oriented semantic dialog parsing frame the prob-

lem as a slot filling task. For example, given the query Play the song don’t stop believin

by Journey, a traditional slot filling system parses it in two independent steps: (i)

It first classifies the intent of the user utterance as PlaySongIntent, and then (ii)

identifies relevant named entities and tags those slots, such as don’t stop believin as

a SongName and Journey as an ArtistName. Traditional semantic parsing can there-

fore be reduced to a text classification and a sequence tagging problem, which is a

standard architecture for many proposed approaches in literature [43, 49, 38]. This

is shown in Figure 2.1.

With increasing expectations of users from virtual assistants, there is a need for

the systems to handle more complex queries – ones that are composed of multiple

intents and nested slots or contain conditional logic. For example, the query Are

there any movie in the park events nearby? involves first finding the location of

parks that are nearby and then finding relevant movie events in them. This is not

straightforward in traditional slot filling systems. Gupta et al. [23] and Einolghozati

et al. [14] proposed multiple approaches for this using a Shift-reduce parser based on

Recurrent Neural Network Grammars [13] that performs the tagging.

In this chapter, we propose a unified approach to tackle semantic parsing for

natural language understanding based on Transformer Sequence to Sequence models
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Play	the	song	don't	stop	believin	by	Journey

SongName

ArtistName

Intent:	PlaySongIntent

Slots:		SongName(don't	stop	believin),	
											ArtistName(Journey)

PlaySongIntent

Figure 2.1. Semantic parsing of a “simple” query. Simple queries define single action
(intent) and can be decomposed into a set of non-overlapping entities (slots).

[81] and a Pointer Generator Network [82, 74]. Furthermore, we demonstrate how

our approach can leverage pre-trained resources, such as neural language models, to

achieve state of the art performance on several datasets. In particular, we obtain

relative improvements between 3.3% and 7.7% over the best single systems on three

public datasets (SNIPS [7], ATIS [63] and TOP [23], the last consisting of complex

queries); on two internal datasets, we show relative improvements of up to 4.9%. The

sequence to sequence architecture also allows us to easily adapt the architecture to

perform transfer learning using additional auxiliary tasks to help train models more

effectively in low-resource scenarios.

Furthermore, our architecture can be easily used to parse queries that do not

conform to the grammar of either the slot filling or RNNG systems. Some examples

include semantic entities that correspond to overlapping spans in the query, and

entities comprising of non-consecutive spans. We do not report any results on these

kinds of datasets but we explain how to formulate the problems using our architecture.

In summary, our contributions are as follows.

• We propose a new architecture based on Sequence to Sequence models and a

Pointer Generator Network to solve the task of semantic parsing for understand-

ing user queries.

• We describe how to formulate different kinds of queries in our architecture. Our

formulation is unified across queries with different kinds of tagging.
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IN:GET_DISTANCE

How	far	is SL:DESTINATION

IN:GET_RESTAURANT_LOCATION

SL:FOOD_TYPE

coffee

the shop

Figure 2.2. Semantic parse for a “complex” query in the Facebook TOP dataset.
This complex query is represented as a tree containing two nested intents and slots.

• We achieve state-of-the-art results on three public datasets and two internal

datasets.

2.2 Methodology

We propose a unified architecture to solve the task of semantic parsing for both

simple and complex queries. This architecture can also be adapted to handle queries

containing slots with overlapping spans. It consists of a Sequence to Sequence model

and a Pointer Generator Network. We choose a pretrained BERT [10] model as our

encoder. Our decoder is modeled after the transformer decoder described in Vaswani

et al. [81] and is augmented with a Pointer Generator Network [82, 29] which allows

us to learn to generate pointers to the source sequence in our target sequence. Figure

2.3 shows this architecture parsing an example query. We train the model using a

cross-entropy loss function with label smoothing.

In this section, we first describe how we formulate queries and their semantic

parses as sequences with pointers for our architecture. We then describe our encoder

and decoder components.
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Intents and slots

play top hits country PlayMusicIntent SortType( @ptr1 )SortType MediaType(
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Figure 2.3. Our architecture - Sequence to Sequence model with Pointer Generator
Network (Seq2Seq-Ptr). The model is currently decoding the symbol after Medi-
aType( by looking at the scores over the tagging vocabulary and the attentions over
the source pointers. It generates @ptr2 since it has the highest overall score.

2.2.1 Query Formulation

A Sequence to Sequence architecture is trained on samples with a source sequence

and a target sequence. When some words in the target sequence are contained in the

source sequence, they can be replaced with a separate pointer token that points to

that word in the source to be able to apply the Pointer Generator Network.

Take the example query from Figure 2.1. In our architecture, we use the query

as our source sequence. The target sequence is constructed by combining the intent

with all the slots, in order, with each slot also containing its source words. The source

and target sequences now look as follows.

Source: play the song don’t stop believin by journey
Target: PlaySongIntent SongName( @ptr3 @ptr4 @ptr5 )SongName

ArtistName( @ptr7 )ArtistName

Here, each token @ptri is a pointer to the ith word in the source sequence. So

@ptr3, @ptr4 and @ptr5 point to the song words don’t stop believin, and @ptr7 points

to the artist word journey. The slots have open and close tags since they are enclosing

a consecutive span of source tokens. The intent is just represented as a single tag at
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the beginning of the target sequence. We can do this for simple queries since they

consist of just one intent. The target vocabulary hence consists of all the available

intents, two times the number of different slots, and the pointers.

Complex queries with multiple intents and nested slots can also be transformed

easily into this formulation. Figure 2.2 shows an example from the Facebook TOP

dataset along with its parse tree. This query How far is the coffee shop can be

converted into our formulation as follows.

Source: How far is the coffee shop
Target: [IN:GET_DISTANCE @ptr0 @ptr1 @ptr2

[SL:DESTINATION [IN:GET_RESTAURANT_LOCATION @ptr3
[SL:TYPE_FOOD @ptr4 SL:TYPE_FOOD] @ptr5
IN:GET_RESTAURANT_LOCATION] SL:DESTINATION] IN:GET_DISTANCE]

We made a minor modification to the reference parses from the TOP dataset for

our formulation. We replaced the end-brackets with custom end-brackets correspond-

ing to the intent or slot they close. We found that this formulation helped our models

perform better.

Finally, we show how we can express queries from datasets that don’t conform

to either the slot-filling or Shift-reduce systems. Take the following example from

the healthcare domain, where the task is to extract a patient diagnosis and related

information from a clinician’s notes.

Source: The pt. was diagnosed with GI upper bleed today.
Annotations: Bleeding_Event (GI bleed),

Anatomical_Site (upper)

A traditional slot filling system wouldn’t know which non consecutive slots to

combine, while a shift-reduce parser cannot split the middle word into a separate tag.

In our architecture, we simply formulate the target sequence as follows.

Target: Bleeding_Event( @ptr5 @ptr7 )Bleeding_Event,
Anatomical_Site( @ptr6 )Anatomical_Site
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2.2.2 BERT Encoder

Language model pretraining has been shown to improve the downstream perfor-

mance on many NLP tasks [60, 64, 10]. The idea is to train a language model on

a large amount of text using a next word prediction objective to learn good repre-

sentations for each of the words. These representations can then be fine-tuned on a

given NLP task to improve the performance of an existing model. Pretrained models

improve the performance of task models since they already contain a lot of useful

semantic information learned through the pretraining phase. This has even more sig-

nificance when the task-specific dataset is fairly small. Some examples of pretrained

models in literature include word embeddings such as Word2Vec [51] and Glove [59],

and contextualized representations such as ELMo [60], OpenAI-GPT [64], and BERT

[10].

We choose BERT to encode the source sequence in our architecture. BERT (Bidi-

rectional Encoder Representations from Transformers) is a language representation

model architecture based on Transformers [81]. The original publicly available model

was pretrained on a millions of lines of text from BooksCorpus and English Wikipedia.

Unlike other language models (ELMo, OpenAI-GPT), which are trained to predict

the next token given the previous sequence of words, BERT uses a composite objective

that combines masked word prediction and next sentence prediction.

BERT’s architecture is based on a multi-layer bidirectional Transformer, originally

implemented in Vaswani et al. [81]. The detailed implementation of this architecture

can be found in Devlin et al. [10]. For our experiments, we use three different variants

of BERT.

For the three public datasets, we used the checkpoint released by Devlin et al.

[10]. Experiments on the two internal datasets were carried out using a model we

pretrained over a large sample of queries from the live traffic of Amazon Alexa. We

also experimented with a publicly-available variant of BERT called RoBERTa [44].
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RoBERTa (A Robustly Optimized BERT Pretraining Approach) uses the same archi-

tecture as BERT but changes the pretraining process. The next sentence prediction

objective is removed and a dynamic masking scheme is used instead of a static one like

the original BERT implementation. RoBERTa was also trained with longer sequences,

higher batch-sizes, and for a longer time, and was reported to match or exceed the

performance of BERT in several NLP benchmarks. The detailed implementation can

be found in Liu et al. [44]. Finally as an ablation study, we experimented with an

encoder with no pretrained weights.

2.2.3 Decoder with Pointer Generator Network

We use the transformer decoder proposed in Vaswani et al. [81] in our architecture.

The self-attention mechanism in the decoder learns to attend to target words before

the current step, as well as all the source words in the encoder.

We set up the decoder with different numbers of units, layers, and attention-heads

for different tasks based on the size and complexity of the queries. These details are

provided in the experiments section.

In a traditional Sequence to Sequence model, the target words are generated from

the decoder hidden states through a feed-forward layer that obtains unnormalized

scores over a target vocabulary distribution. In our architecture, we use a Pointer

Generator Network to generate two different kinds of target words: words from the

target vocabulary consisting of parse symbols (the intent and slot delimiters), and

words that are simply pointers to the source sequence. Our Pointer Generator Net-

work is based on the models in Vinyals et al. [82] and See at al. [74], and is closest

in implementation to Jia and Liang [29].

We now describe our decoding process. For each input source sequence [x1 . . . xn],

we use the BERT encoder to encode it into a sequence of encoder hidden states
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[e1 . . . en]. Having generated the first t − 1 output tokens, the transformer decoder

generates the token at step t as follows.

First, the decoder produces the decoder hidden state at time t, dt by building

multi-layer multi-head self-attention on the encoded output as well as the embeddings

of the previously generated output sequence as described in Vaswani et al. [81]. We

feed dt through a dense layer to produce scores [s1, . . . s|V |] for each word in the

vocabulary V . V contains all symbols necessary for the parse (intents, slots) but not

regular words appearing on the source side.

We also use dt as a query and compute unnormalized attention scores [a1 . . . an]

with the encoded sequence. Concatenating the unnormalized attention scores (size n)

and the output of the dense layer (size |V |), we obtain an unnormalized distribution

over |V |+ n tokens, the first |V | of which are the output parsing vocabulary and the

last n of which are the @ptri (0 < i < n) words pointing to the source tokens. We

then feed this through a softmax layer to obtain the final probability distribution.

This probability is used in the loss function during training and will be used to

choose the next token to generate during inference. Since the transformer decoder

uses embeddings of previously generated tokens, we use a set of special embeddings

to represent @ptri tokens.

In the example in Figure 2.3, we are trying to predict a target word after the token

’MediaType(’ at step 5. As shown in the figure, we compute the scores [a1 . . . a4]

(blue, left) over each of the source tokens, and the scores [s1 . . . s|V |] (green, right)

over the parsing vocabulary. We expect the model to produce the highest score for

a3, which corresponds to @ptr2, representing the word hits.
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2.3 Evaluation

We evaluate our models on multiple datasets and compare it against strong base-

lines. This sections covers information about the datasets, baselines, experimental

methodology, and results.

2.3.1 Datasets

We test our approach on five different datasets (three publicly available, two in-

teral), which we describe in this section.

2.3.1.1 Facebook TOP

The Task Oriented Parsing (TOP) [23] dataset contains complex hierarchical and

nested queries that make the task of semantic parsing more challenging. It contains

around 45k annotations with 25 intents and 36 slots, randomly split into 31k training,

5k validation and 9k test utterances. The dataset mainly consists of user queries about

navigation and various public events. An example from this dataset can be seen in

Figure 2.2.

The IN: prefix stands for intent while SL: is for slot. We can see how there are

multiple intents and nested slots in the semantic interpretation. This makes the query

much harder to interpret and parse using a simple slot tagging model that tags each

word with a single slot.

2.3.1.2 SNIPS

The SNIPS dataset [7] is a public dataset that is used for training and testing

semantic parsing models for voice assistants. It consists of utterances that belong

to seven different intents: SearchCreativeWork, GetWeather, BookRestaurant, Play-

Music, AddToPlaylist, RateBook, and SearchScreeningEvent. Each intent contains

around 2000 examples to train and 100 to test.
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This dataset contains only simple queries with single intents and flat slots. An

example is Will there be fog in Tahquamenon Falls State Park, where the intent is

GetWeather and the slots are condition description for fog and geographic poi

for Tahquamenon Falls State Park.

The dataset was originally used to evaluate models in the Snips Voice Platform.

It has since been a widely used dataset to benchmark the performance of various

task-oriented parsing models.

2.3.1.3 ATIS

The Airline Travel Information System (ATIS) [63] corpus is a widely used dataset

in spoken language understanding. It was built by collecting and transcribing audio

recordings of people making flight reservations in the early 90s. It consists of simple

queries.

There are seventeen different goals or intents such as Flight or Aircraft capacity.

This distribution is however skewed, with the Flight intent covering about 70% of

the total queries. An example from this dataset consists of the query How much is the

cheapest flight from Boston to New York tomorrow morning? The intent is Airfare,

while the slots tag important information like the departure and arrival cities, and

the departure times.

The ATIS corpus has supported research in the field of spoken language under-

standing for more than twenty years. Some researchers have performed extensive error

analysis on the state of the art discriminative models for this dataset and reported

that despite really low error rates, there exist many unseen categories and sequences

in the dataset that can benefit from incorporating linguistically motivated features

[79]. This supports the continued utility of ATIS as a research corpus.
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2.3.1.4 Internal Datasets

Our internal datasets consist of millions of user utterances that are used to train

and test Amazon Alexa. For our experiments, we sampled two datasets of utterances,

one from the music domain and the other from video domain. Utterances in these

domains naturally included a large amount of entities (e.g. artists and albums names,

movie and video titles), and thus represent a good benchmark for the ability of any

neural model to generalize over a diverse set of queries. The example in Figure 2.3 is

from the music domain.

The sampled music domain dataset contains 6.2M training and 200k test utter-

ances, with 23 intents and 100 slots. The video domain dataset contains 1M training

and just 5k test utterances; parses in this dataset are comprised of 24 distinct intents

and 59 slots.

2.3.2 Baseline Models

We benchmark our performance on the internal datasets by comparing it to a well

tuned RNN based model. The model learns to perform joint intent and slot tagging

using a bidirectional LSTM and a Conditional Random Field (CRF) [28]. We further

enhanced this baseline by replacing its embedding and encoder layers with a language

model pretrained on a subset of Alexa’s live traffic. These components were fine-tuned

on the two datasets described in Section 2.3.1.4.

For the ATIS and SNIPS datasets, we use the top four performing methods re-

ported by Zhang et al. [95] as baselines. All these models perform joint intent and

slot tagging. There are two variants that use RNNs: a simple RNN based model, and

an RNN model augmented with attention. There is also a model that works com-

pletely with just attention, the slot gated full attention model. The final baseline,

CapsuleNLU, uses Capsule Networks [71].
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For the TOP dataset, we pick a model based on Recurrent Neural Network Gram-

mars (RNNG) [13], the Shift Reduce Parser. We provide a brief overview of this model

as described in Gupta et al. [23] - the parse tree is constructed using a sequence of

transitions, or actions. The transitions are defined as a set of SHIFT, REDUCE, and

the generation of intent and slot labels. SHIFT action consumes an input token (that

is, adds the token as a child of the right most open sub-tree node) and REDUCE

closes a sub-tree. The third set of actions is generating non-terminals: the slot and

intent labels. The model learns to perform one of these actions at each step in time.

We report scores of three experimental setups with the shift reduce parser from

Einolghozati et al. [14]: a simple shift reduce parser, a shift reduce parser augmented

with ELMo embeddings, and an ensemble of these models augmented with ELMo

and an SVM language model reranker.

2.3.3 Experimental Setup

All our models were trained on a machine with 8 NVIDIA Tesla V100 GPUs,

each with 16GB of memory. When using pretrained encoders, we leveraged gradual

unfreezing to effectively tune the language model layers on our datasets. We used

the ”Base” variant of BERT and RoBERTa encoders, which uses 768-dimensional

embeddings, 12 layers, 12 heads, and 3072 hidden units. When training from scratch,

we used a smaller encoder consisting of 512-dimensional embeddings, 6 layers, 8 heads,

and 1024 hidden units.

Depending on the dataset, we used either a 128 units, 4 layers, 3 heads, and 512

hidden units decoder (Facebook TOP, ATIS, SNIPS) or a larger 512 units, 6 layers, 8

heads, and 1024 hidden units decoder (internal Music and Video datasets). We used

bi-linear product attention to score the source words in the Pointer Network.

While training, the cross entropy loss function was modified with label smoothing

with ϵ = 0.1. We used the Adam [35] optimizer with noam learning rate schedule
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Method
Accuracy

exact match intent

Shift Reduce (SR) Parser [14] 80.86 –
SR with ELMo embeddings [14] 83.93 –

SR ensemble + ELMo + SVMRank [14] 87.25 –
Seq2Seq-Ptr (no pretraining) 79.25 97.43
Seq2Seq-Ptr (BERT encoder) 83.13 97.91

Seq2Seq-Ptr (RoBERTa encoder) 86.67 98.13

Table 2.1. Results on TOP [23]. Our system (Seq2Seq-Ptr) outperforms the best
single method (SR + ELMo) by 3.3%. It is close to the best ensemble approach (SR
+ ELMo + SVRank).

[81], each adjusted differently for different datasets. At inference time, we used beam

search decoding with a beam size of 4.

2.3.4 Results and Discussion

We use exact match (EM) accuracy as the main metric to measure the performance

of our models across all datasets. Under this metric, the entire semantic parse for

a query has to match the reference parse to be counted as correct. Because EM is

generally more challenging than slot-level precision and recall or semantic error rate

[78], it is better suited to compare high performing systems like the ones studied in

this work. For completeness, we also report the intent classification accuracy for our

models.

The results from our experiments are documented in Tables 2.1-2.5. Our models

match or beat the baselines across all datasets on both exact match and intent clas-

sification accuracies. We see significant improvements on both simple and complex

datasets.

2.3.4.1 Complex Queries

We achieve an improvement of 2.7 (+3.3%) EM accuracy points on the TOP

dataset over the state-of-the-art single model on this dataset (Table 2.1). Our Seq2Seq-
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Method
Accuracy

exact match intent

Joint BiRNN [25] 73.20 96.90
Attention BiRNN [43] 74.10 96.70

Slot Gated Full Attention [21] 75.50 97.00
CapsuleNLU [95] 80.90 97.30

Seq2Seq-Ptr (no pretraining) 85.43 97.00
Seq2Seq-Ptr (BERT encoder) 86.29 98.29

Seq2Seq-Ptr (RoBERTa encoder) 87.14 98.00

Table 2.2. Results on SNIPS [7]. Our system (Seq2Seq-Ptr) outperforms the
previous state of the art by 7.7%.

Ptrmodel with RoBERTa encoder is only surpassed by the ensemble model reported

in Einolghozati et al. [14] (+0.6% EM accuracy points.)

In addition, we find that even without specifying any hard requirements for the

grammar of the parse trees in the complex queries, 98% of the generated parses are

well formatted. For the simple query datasets, it was greater than 99% but difference

is expected since the grammar is easier to learn there.

During error analysis, we found an interesting example in the TOP dataset where

we believe our model generates a valid, more meaningful parse than the reference an-

notation. For the query What time do I need to leave to get to Helen by 8pm, our model

parses Helen as [SL:DESTINATION [IN:GET LOCATION HOME [SL:CONTACT Helen ]

] ], while it is annotated as [SL:DESTINATION Helen ]. Our parse resolves the

query as finding the estimated departure time to get to a location that is the home

location of a contact named Helen, while the reference annotation suggests that the

correct interpretation is to find the estimated departure time to get to a destination

named Helen. We believe our parse is more likely to be correct given that Helen is

most likely the name of a person.
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Method
Accuracy

exact match intent

Joint BiRNN [25] 80.70 92.60
Attention BiRNN [43] 78.90 91.10

Slot Gated Full Attention [21] 82.20 93.60
CapsuleNLU [95] 83.40 95.00

Seq2Seq-Ptr (no pretraining) 81.08 95.18
Seq2Seq-Ptr (BERT encoder) 86.37 97.42

Seq2Seq-Ptr (RoBERTa encoder) 87.12 97.42

Table 2.3. Results on ATIS [63]. Our system (Seq2Seq-Ptr) outperforms the
previous best method by 4.5%.

2.3.4.2 Simple Queries

We report results of our sequence to sequence model (Seq2Seq-Ptr) on four

datasets (SNIPS, ATIS, internal music, internal video) that contain simple queries in

Tables 2.2, 2.3, 2.4, and 2.5.

On the SNIPS and ATIS datasets, we note that the best version of our method

(Seq2Seq-Ptrwith RoBERTa encoder) achieves a significant improvement in EM

accuracy over existing baselines (+7.7% and +4.5% respectively.) Using a BERT

encoder causes a slight decrease in performance, but still achieves a meaningful im-

provement over the previous state of the art [95]; this is consistent with what has been

observed on other NLP tasks [44]. If no pretraining is used, performance is further

reduced but it is notable that this variant still beats all the baselines on the SNIPS

dataset.

For our internal Alexa datasets, we note that the proposed Seq2Seq-Ptrmethod

obtains comparable results to a BiLSTM-CRF tagger on the music domain, and

slightly better EM accuracy (+1.9%) on the video domain. We believe our model

wasn’t able to outperform the baseline on the music domain because the entities

in this domain are very diverse, especially song or album names. Sequence tagging

methods therefore benefit from having to solve a simpler task of having to tag each

word in the sequence, as opposed to our unconstrained model. We would however
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Method
Accuracy

exact match intent

BiLSTM-CRF (no pretraining) baseline
BiLSTM-CRF (pretrained LM) +3.0% +0.1%
Seq2Seq-Ptr (no pretraining) -0.3% -0.7%
Seq2Seq-Ptr (BERT encoder) -2.2% -0.8%

Seq2Seq-Ptr (RoBERTa encoder) -3.5% -0.7%

Table 2.4. Results on an internal Amazon dataset (music). The best configuration
of our method (Seq2Seq-Ptr) is comparable to a BiLSTM-CRF pretrained on a
large conversational dataset.

Method
Accuracy

exact match intent

BiLSTM-CRF (no pretraining) baseline
BiLSTM-CRF (pretrained LM) +3.0% +0.1%
Seq2Seq-Ptr (no pretraining) +2.9% -0.1%
Seq2Seq-Ptr (BERT encoder) +0.1% -0.2%

Seq2Seq-Ptr (RoBERTa encoder) +4.9% -0.2%

Table 2.5. Results on an internal Amazon dataset (video). The best configuration
of our method (Seq2Seq-Ptr) outperforms a pretrained BiLSTM-CRF network by
1.9%.

like to note that our from-scratch variants beat the from-scratch baselines on both

domains. Also curiously, the performance of Seq2Seq-Ptrwith a BERT encoder fell

behind that of a sequence to sequence model trained from scratch. Since the scratch

model uses a smaller transformer encoder (6 layers with 8 heads per layer instead of

12/12), we believe it was able to converge more effectively than the BERT encoder.

2.4 Related Work

The task of semantic parsing for intent and slot detection is well established in

literature. Traditionally, this was done with slot filling systems that classify the

query and then label each word in the query. There were a few approaches that

followed this system, using Recurrent Neural Networks [43, 49]. Researchers have

also experimented with Convolutional Neural Networks and showed good results [34]

and more recently, Capsule Networks [71, 95].
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Prior to the advent of deep learning models, the task of sequence labeling was

tackled with the use of Conditional Random Fields (CRF) [38, 31, 58]. CRFs learn

pairwise potentials on labeling subsequent words which allow models to find more

probable label sequences for a given query.

Most of this work is valid for semantic parsing for simple queries which boils

down to a sequence labeling task. To handle more complex cases with hierarchi-

cal slots such as the example in Figure 2.2, researchers have experimented with Se-

quence to Sequence models and models based on Recurrent Neural Network Gram-

mars (RNNG) [13]. RNNGs were shown to perform better on complex queries than

RNN or Transformer-based Sequence to Sequence models [23]. Researchers have also

explored models involving logical forms and discourse for language representation

[42, 94, 80]. The Pointer Generator Network in our architecture was introduced in

Vinyals et al. [82]. It was used in NLP applications where some words from the

source sequence reappeared in the target sequence such as text summarization and

style transfer [74, 57, 62]. They were also used to copy out of vocabulary words from

the source to target in machine translation [36]. Our implementation of the Pointer

Network is closest to the architecture in Jia and Liang [29]. By using pointers to

represent the source tokens and imposing no particular logical form over our target

sequence, we can handle any kind of queries for parsing. This makes our architecture

as expressive as logical forms, while also being able to learn as easily as simple slot

tagging systems.

2.5 Contributions

We propose a unified architecture for the task of semantic parsing for different

kinds of queries. We show that our architecture matches or outperforms existing

approaches across multiple datasets : internal music and video datasets, SNIPS,
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ATIS, and Facebook TOP. We significantly outperform the current state of the art

models on the public datasets TOP (3.3%), SNIPS (7.7%), and ATIS (4.5%).

We describe how to apply this architecture to both simple queries and complex

queries with hierarchical and nested slots. We also describe how to formulate any set

of queries with non-conforming grammars to work with our architecture, making this

model applicable to many different types of semantic parsing. By creating a sequence

to sequence architecture for semantic parsing, we pave way for future low resource

work using transfer learning and auxiliary tasks.

2.6 Collaboration Statement

This chapter is adapted from Rongali et al. [69]. The work was done in col-

laboration with Luca Soldaini, Emilio Monti, and Wael Hamza from Amazon Alexa

AI.
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CHAPTER 3

AT-AT: AN END-TO-END SYSTEM FOR SPOKEN
LANGUAGE UNDERSTANDING

3.1 Introduction

Voice assistants are built on complex Spoken Language Understanding (SLU)

systems that are typically too large to store on an edge device such as a mobile phone

or a smart speaker. Hence, user traffic is routed through a cloud server to process

requests. This has led to privacy concerns and fueled the push for tiny AI and edge

processing, where the user requests are processed on the device itself.

Traditional SLU systems consist of a two-stage pipeline, an Automatic Speech

Recognition (ASR) component that processes customer speech and generates a text

transcription (ex. play the song watermelon sugar), followed by a Natural Language

Understanding (NLU) component that maps the transcription to an actionable hy-

pothesis consisting of intents and slots (ex. Intent: PlaySong, Slots: SongName -

watermelon sugar). An end-to-end (E2E) system that goes directly from speech to

the hypothesis would help make the SLU system smaller and faster, allowing it to be

stored on an edge device. It could potentially also be better optimized than a pipeline

since it eliminates cascading errors.

However, E2E systems are not used in practice because they have some key issues.

These systems are hard to build since they consist of large neural components such

as transformers and require massive amounts of E2E training data. They also don’t

make use of the vastly available training data for the ASR and NLU components

that could be used to enhance their performance, because the examples in these
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Target

Decoder

Audio
Encoder

Text 
Encoder

AT-AT PlayMusic( okay Artist(
rihanna )Artist )PlayMusic
it was a glorious morning

to wake up to
an old fashioned bar was

close by
PlayMusic( play Song( 

don’t stop believing )Song )PlayMusicplay don’t stop believing

SLU

ASR

MLM

NLU

Figure 3.1. Pretraining AT-AT with audio-to-text and text-to-text tasks. The audio
and text inputs go to separate encoders but share a joint decoder, which decodes the
target sequence based on the task. Task labels are passed as BOS tokens while
decoding.

datasets may not be aligned to create an E2E training sample. Another issue is

feature expansion, a scenario where a new domain, with new intents and slots, is

added to the voice assistant’s capabilities. Here, developers typically only have access

to some synthetically generated text-hypothesis examples. Speech data isn’t readily

available and it is very expensive to collect. E2E models thus fail as they require lots

of new audio and hypothesis data to learn this new domain.

In this work, we build an E2E model that mitigates these issues using transfer

learning. We call it the Audio-Text All-Task (AT-AT) Model. AT-AT is an E2E

transformer-based model that is jointly trained on multiple audio-to-text and text-

to-text tasks. Examples of these tasks include speech recognition (ASR), hypothesis

prediction from speech (SLU), masked LM prediction (MLM), and hypothesis pre-

diction from text (NLU). Our model achieves this by converting data from all these

tasks into a single audio-to-text or text-to-text format. Figure 3.1 shows this joint

training phase in detail. Our findings indicate that there is significant knowledge

transfer taking place from multiple tasks, which in turn helps in downstream model

performance. We see that the AT-AT pretrained model shows improved performance

on SLU hypothesis prediction on internal data collected from Alexa traffic. We also
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report state-of-the-art results on two public datasets: FluentSpeech [46], and SNIPS

Audio [70].

Furthermore, since our model contains a text encoder, it can consume both audio

and text inputs to generate a target sequence. By jointly training on both audio-to-

text and text-to-text tasks, we hypothesize that this model learns a shared represen-

tation for audio and text inputs. This allows us to simply train on new text-to-text

data and get audio-to-text performance for free, giving us a way to do E2E hypothesis

prediction in a zero-shot fashion during feature expansion. We test this approach on

an internal dataset from Alexa traffic, and an external dataset, Facebook TOP [23].

Since TOP consists of only text data, we collected speech data for the test split using

an internal tool at Amazon. We release this dataset.

In summary, our contributions are as follows.

• We developed an E2E SLU model that is jointly trained on multiple audio-to-

text and text-to-text tasks and shows knowledge transfer and SLU performance

improvements.

• We report state-of-the-art results on two public SLU datasets, FluentSpeech

and SNIPS Audio.

• We show how to perform zero-shot E2E hypothesis prediction with our model.

• We report a new benchmark for zeroshot E2E SLU on the Facebook TOP

dataset and release the test data.

3.2 Related Work

The architecture of prior E2E SLU models is taken from neural speech recognition

literature. Speech recognition was originally performed using hidden Markov models

that predict acoustic features, followed by word-level language models [17]. More

recently, deep learning models have become more popular for this task [27]. Deep
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learning models solve this task by posing it as a sequence-to-sequence problem [22, 54].

With the success of transformer-based sequence-to-sequence models on text based

tasks [81], researchers have explored and shown success in applying them for speech

recognition [52, 33]. Our architecture is based on these models.

Other end-to-end SLU models also closely resemble this sequence-to-sequence

encoder-decoder framework [24, 46]. The slot-filling task for SLU is formulated as

a target text sequence by wrapping the target English tokens with intent and slot

tags, which was shown to achieve state of the art results [69]. Our approach improves

upon these models by introducing transfer learning. The transfer learning paradigm

we adopt here is similar to prior efforts that use multiple tasks or pretraining to im-

prove SLU performance [84, 30]. The audio-text shared training idea also has prior

work. However, these efforts require parallel audio-text data [8], or are evaluated on

a simpler classification task [72].

Zeroshot E2E SLU, where we only have text NLU training data but no audio has

also been explored. Recently, [45] approached this task using speech synthesis. They

generate synthetic speech from text using a Text to Speech (TTS) system and use the

resultant audio to train their models. While this approach is simple and intuitive, its

success greatly depends on access to a good TTS system. We propose a method that

can perform this task, end-to-end, without any TTS system, and can also be used in

conjunction with a TTS system to further improve performance.

Finally, an important part of all these models is the representation of audio. The

raw audio waveform is typically converted into higher level features before being

passed to the actual models. While Mel-Frequency Cepstral Coefficitents (MFCC)

have been the traditional choice for this conversion, Log-filterbank features (LFB)

have become more popular recently [15]. We use LFB features here.
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3.3 The AT-AT Model

In this section, we explain the design of our proposed Audio-Text All-Task (AT-

AT) model. AT-AT is trained to jointly perform multiple audio-to-text and text-to-

text tasks.

We hypothesize that AT-AT will benefit from potential knowledge transfer in a

multi-task setting. This is in line with findings in a recent work [65] that converts

a variety of text based natural language tasks into source and target text sequences

and shows knowledge transfer by using a single shared sequence-to-sequence model.

AT-AT can also be used as a pretrained checkpoint to build end-to-end models on

new datasets to achieve better performance. Finally, we believe that AT-AT is a pow-

erful audio-text shared representation model that would allow us to do E2E zeroshot

prediction using just text data.

When training AT-AT with audio tasks, the input audio signal is pre-processed

to obtain a sequence of LFB features, which is taken as the source sequence. For text

tasks, the source sequence is simply the text input tokens. The target consists of a

sequence of tokens corresponding to the task being solved. For example, the target

sequence is a sequence of words if the task is speech recognition. If the task is SLU

or NLU hypothesis prediction, the target consists of the intent and slot tags as well

as the words within them, a formulation based on recent work that solves this task

as a sequence-to-sequence problem [69]. An example set of source-target sequences

for tasks is shown in Figure 3.1. We pass the task label as the beginning-of-sequence

(BOS) token in the target decoder. This way, the model can conditionally decode

the target sequence based on the observed input and the task being solved. Note

that previous multi-task text-to-text models [65] add this information to the source

sequence itself. Since our source sequence can be in the audio space, we add the task

label at the start of the target sequence.
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While the audio encoder trained on multiple audio-to-text tasks presents an obvi-

ous transfer learning advantage in SLU, our reasons for incorporating a text encoder

in this model are two-fold; first, we can add more text-to-text tasks in the pretraining

phase, and second, more importantly, this would enable us to train on a task with

only text-to-text data and expect good audio-to-text performance. AT-AT thus has

the ability to do zero-shot end-to-end SLU by training on only annotated text data,

an important ability that comes in handy during feature expansion, where new in-

tents and slots need to be added to the model without any audio data available. This

situation arises because the text data for new intents and slots can be synthetically

generated but the audio data is not readily available and is expensive to collect.

A model can develop the zero-shot ability if the audio and text inputs share a

common space from which the target sequence is generated. A common way to learn

a shared space from two input sources is to explicitly impose an L2 loss penalty on the

hidden state vectors of the two aligned input sources [8]. This is however infeasible

in our setup because the hidden states from the audio and text input sequences are

not single vectors, but sequences of vectors of different lengths and resolution. While

we can pool these vectors to get a single vector, doing so would result in a huge

information bottleneck which makes the decoder incapable of decoding the target

sequence well. We resolve this problem by avoiding the explicit vector alignment

altogether, hence eliminating any need to pool the encoder hidden states. We use a

single shared decoder to process the hidden state vectors of both the audio and text

encoder. By constraining the complexity of this decoder, we force it to learn a shared

representation between audio and text so that it can solve both tasks without solving

them separately.

AT-AT consists of two phases of training: 1) the pretraining phase, where we train

our model on multiple audio-to-text and text-to-text tasks, and 2) the finetuning
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Figure 3.2. Model Components of AT-AT. The audio encoder consists of a CNN
embedding layer and a transformer encoder to encode the audio spectrograms. The
text encoder consists of a token embedding layer and a transformer encoder, similar
to most pretrained language models such as BERT. There is only one decoder that
decodes text from both encoders and it is a transformer decoder with tied embed-
ding/generator weights.

phase, where we finetune our model on a single downstream task. The architecture of

AT-AT, these two phases, and our zeroshot end-to-end approach are described below.

3.3.1 Architecture

AT-AT has an architecture similar to many transformer-based speech recognition

models proposed recently [33, 52], which contain an encoder-decoder framework to

process a source audio sequence and decode the target text sequence. In addition to

the audio encoder, our model also contains a text encoder to process text sequences.

The audio encoder consists of multiple convolutional and max pooling layers to

contextually embed the audio LFB spectrogram. This is followed by a transformer

encoder [81]. These convert the input audio sequence into a much shorter sequence

of hidden states to be consumed by the decoder. For the text encoder, we use BERT

[10], which consists of an embedder to embed the input tokens and their positions,

followed by a transformer encoder. The text encoder typically produces hidden states

that are larger in size than the audio encoder so we use a projection layer to project
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the text hidden states down to match the dimensionality of the audio hidden states.

Once this is done, both the text and audio sequences generate a sequence of hidden

states of the same size.

We use a single transformer decoder to decode the targets from the sequence of

encoder hidden states. Both the text and audio inputs go through the same generation

process, which allows the model to learn a shared representation without any explicit

loss penalty to align them.

We use byte-pair encoding (BPE) to split the target words into smaller pieces.

We only split the target English words, not any tokens corresponding to intent and

slot tags. The target sequence tokens are embedded using a standard embedding

matrix. The transformer decoder consumes the current token embedding and per-

forms a multi-head multi-layer attention over the encoder hidden states to generate a

decoder hidden state. The decoder hidden state is passed through a generator layer

that shares weights with the embedding matrix. The generator layer assigns a proba-

bility mass to each token in the target vocabulary, representing the probability of that

token being generated next. Further details on this decoder framework are beyond

the scope of this paper and can be found in [81]. Note that instead of a fixed BOS

token to start decoding as usual, we use the task label as the BOS token. Figure 3.2

lays out these components.

3.3.2 Pretraining Phase

The pretraining phase of AT-AT consists of training with multiple audio-to-text

and text-to-text sequence-to-sequence tasks. Examples from all tasks are randomly

sampled in each batch during pretraining. Figure 3.1 shows the pretraining phase

in action, where we train with three audio-to-text tasks: SLU hypothesis prediction

(SLU), automatic speech recognition (ASR), masked-audio LM prediction (MLM),

and one text-to-text task: NLU hypothesis prediction (NLU). For the MLM task,
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the audio corresponding to certain words is masked out and the model is trained to

predict the whole target sequence. We perform audio-word alignment prior to the

masking using an external tool; more details on this are in the datasets section. We

require at least one audio-to-text and one text-to-text task if the model will be used

to do zeroshot E2E prediction.

3.3.3 Finetuning Phase

In the finetuning phase, we start from the pretrained model and train it on a

specific downstream task, such as SLU. We hypothesize that pretraining with multiple

tasks allows the model to transfer knowledge from different tasks, allowing it to be

better regularized and obtain a warm start for optimization for the downstream task.

When the pretrained model is used as a starting point for new datasets with new

intents and slots, unseen target token embeddings are randomly initialized. The model

is first trained by freezing all pretrained parameters so that these new parameters get

to a good optimization point. They are then gradually unfrozen over time as the

model is finetuned.

3.3.4 Zeroshot End-to-End

In the zeroshot scenario, we have access to a new annotated text-to-text dataset

and we want to construct an E2E model capable of predicting the target sequence

given audio input. It is a common occurrence in the feature expansion phase in voice

assistants, where a new domain is added to the voice assistant’s capabilities. For

example, say a voice assistant is currently capable of handling user requests in music

and shopping domains. We want to add the capability for it to handle requests in

a new domain, say books, such as reading a book. In this case, developers usually

write down some launch phrases and annotate them to perform a certain task in the

new domain. The audio data for these phrases doesn’t exist yet. The goal is to
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bootstrap an E2E model that can process audio data and generate the hypothesis by

just training on the text data.

AT-AT allows us to do this easily when it is pretrained on a certain task from both

audio and text inputs. In the voice assistant feature expansion case for example, the

pretraining phase is carried out with an SLU task on existing domains, an NLU task

on existing domains, and any other tasks we want to add such as ASR and MLM.

Once the pretraining is complete, we simply finetune the model using the annotated

text NLU data from the new domain and test on audio data.

While this is one way to train E2E models without audio data, another way

is to simply generate the missing audio data using a Text-to-Speech (TTS) system

and use it for training. This approach is however contingent on the availability of

a good TTS system. With AT-AT, we can perform zeroshot prediction without a

TTS system. Moreover, when we do have access to a TTS system, we can add

the generated synthetic audio to the finetuning phase and finetune AT-AT on both

the synthetic audio and text. We hypothesize that this is better than simple E2E

training since the text NLU data helps train the language model within the decoder

even better, allowing AT-AT to work harmoniously with synthetic audio to further

improve performance.

3.4 Evaluation

3.4.1 Datasets

Our experiments are carried out on a combination of internal and publicly available

datasets. We describe them here.

3.4.1.1 Internal SLU Data

Our internal dataset is created by sampling utterances from user traffic of our voice

assistant, Alexa. This is done in compliance with user commitments with regards to
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privacy and anonymity. We select only utterances from the music domain for the

first set of experiments. This dataset contains about 3M training utterances, 100k

validation, and 100k testing utterances comprising 23 intents and 95 slots. Each

utterance here contains the audio, text transcript, and the SLU hypothesis.

For our low-resource experiments, we sample 10% of utterances from the above

dataset and select the audio and hypotheses. We pick the text transcriptions from

the rest to create data for the ASR task during AT-AT pretraining.

3.4.1.2 LibriSpeech ASR Data

We also compile an ASR dataset by downloading all splits of the publicly available

LibriSpeech dataset [56], giving us ∼1000 hours of data. This data is comprised of

multiple speakers reading sentences from audio books in the LibriVox project.

3.4.1.3 MLM Data

We create the dataset for the MLM task by modifying the LibriSpeech dataset.

We first use an external audio alignment tool, Gentle1 that is built on the Kaldi

framework [61]. Once this is done, we mask 15% of the words in each transcript and

the corresponding audio in the audio file. This masked audio is then processed to

produce the LFB features to produce the audio input and the target sequence is the

entire transcript.

3.4.1.4 Public SLU Datasets

We also evaluate AT-AT on public SLU datasets to compare with the state-of-

the-art results. We use two public datasets: FluentSpeech [46], and SNIPS Audio

[70] in our evaluation. The FluentSpeech dataset consists of target sequences that

are 3-tuples, not sequences. We convert them into target sequences using some pre-

1https://github.com/lowerquality/gentle
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processing rules to create data in the required format. More details on data processing

are given in Appendix A. There are about 23k train, 3k valid, and 4k test examples

in this dataset.

The annotations in SNIPS are in the form of intents and slots, so can be trivially

converted into target sequences in the required format. We use the smart-lights close-

field and far-field datasets from the SNIPS dataset for our experiments and report

results with 5-fold cross validation since there are no explicitly delineated train-test

splits. These dataset are extremely small, each consisting of a total of 1660 examples.

3.4.1.5 Zeroshot SLU Datasets

For our zeroshot experiments, we require text NLU training data and audio SLU

test data on an unseen domain. We collect two datasets for this. First is an in-

ternal dataset that consists of utterances sampled from Alexa traffic in the books

domain. We extract around 200k text NLU training examples, and 10k audio SLU

test examples comprising 21 intents and 47 slots.

We also construct a zeroshot dataset from the publicly available Facebook TOP

[23] dataset. This is a challenging dataset that contains complex utterances with

nested intents and slots. It contains ∼32k train, 4k eval, and 9k test utterances. We

want to evaluate the performance of AT-AT on this dataset to show its effectiveness

in a complete domain shift. With TOP, we use the training and validation data

splits as is. Using an internal utterance collection tool, we collected audio data for

a fraction of the test split, about 1915 utterances from multiple speakers, to test

zeroshot performance. We release this dataset2.

For the zeroshot experiments, one of our baselines is an E2E model built by

generating synthetic speech data from a TTS System. We use Amazon Polly3 as our

2https://subendhurongali.netlify.app/publication/atat/

3https://aws.amazon.com/polly/
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TTS system. We use 9 randomly selected speakers and the neural engine to create

speech data for utterances. Further details on synthetic data generation can be found

in Appendix A.

3.4.2 Experimental Details

We use 80-dim LFB features to process the audio signals. The target English

words were tokenized using byte-pair encoding to obtain a final vocabulary of 5k.

We use a 2-layer 2D CNN with 256 final units and a transformer encoder with

12 layers, 4 heads, 256 units, and 2048 hidden units as our audio encoder. The text

encoder is the standard BERT-base encoder [10]. The target decoder consists of a

256-dim tied embedding/generator matrix and a transformer decoder with 6 layers,

4 heads, 256 units, and 2048 hidden units. We use noam learning rate schedule with

4000 warm-up steps and an adam optimizer with learning rate 1. We use cross entropy

loss with label smoothing (ϵ = 0.1) as our loss function. During inference, we use

beam search with a beam-size of 4.

When finetuning with gradual unfreezing, we use a learning rate multiplier of 0

for the first 500 steps, and 0.2, 0.5, 0.7 for the next 100 steps each, finally reaching

1 after 800 steps and training normally from there on. We didn’t perform extensive

hyper-parameter tuning for our experiments.

3.4.3 AT-AT in Low Resource Settings

Our first set of experiments evaluate the effect of AT-AT multi-task training on

improving the performance of an E2E model trained on a low-resource annotated

dataset. To simulate the low resource setting, we take our internal music SLU dataset

and sample 10% of the data to obtain the speech and SLU annotations. For the rest of

the examples, we obtain the ASR transcripts to create the ASR dataset for the multi-

task training. Our AT-AT model is pretrained on these two tasks. We evaluate this
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Method SemER EM Accuracy

E2E Model with 100% data baseline baseline
E2E Model with 10% data +8.63 -11.82

AT-AT, Pretrained (10%) +2.13 -2.52
AT-AT, Finetuned (10%) +1.45 -1.49

Table 3.1. Results on an internal Amazon music dataset in the low-resource setting.
Our AT-AT models vastly improve over a simple E2E model trained on 10% of the
data and almost catch up to a model trained on 100% data.

model’s performance on the test set immediately after pretraining. We then perform

the finetuning step on just the 10% SLU data and perform another evaluation.

3.4.3.1 Baselines

We train two E2E models as baselines. These models have the same architecture

as our AT-AT model, without the multi-task component or the text encoder. The

first model is trained on the full internal music SLU dataset. The second model is

trained on the extracted 10% dataset. We expect our AT-AT model, that makes

use of the additional ASR data from music to recuperate any drop in performance

between these two models.

3.4.3.2 Results

Table 3.1 shows the results of these experiments. We report two metrics here, the

semantic error rate (SemER), and the exact match (EM) accuracy. Exact match ac-

curacy simply corresponds to the accuracy obtained by matching the entire predicted

hypothesis to the gold hypothesis. SemER is a more slot-filling oriented metric that

rewards partially correct hypotheses. It is an internal metric that is used to evaluate

the performance of SLU models built for Alexa. Given the number of insertion (I),

deletion (D), and substitution (S) errors in the predicted hypothesis, it is given by

S+I+D
# total slots + 1 (for intent)

. We want a lower SemER and a higher EM accuracy. Due to
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internal regulations, we do not report the absolute numbers on internal datasets. For

this experiment, we use the performance numbers of the E2E model trained on 100%

data as the baseline and report the remaining numbers relative to it.

We observe that there is a big drop in performance when we train a model on

100% data vs 10% data. The SemER increases by 8.63 absolute points. However,

our AT-AT model, pretrained with additional ASR data recuperates most of this

performance, mitigating this increase in error to only 2.23 points. Finetuning on the

SLU data further improves performance, giving us a error increase of just 1.45 points.

We see a similar trend in the exact match accuracy scores as well where our models

lose the least number of accuracy points. These results show that multi-task training

with additional ASR data is hugely beneficial in a low-resource scenario.

3.4.4 Building Better E2E Models with AT-AT

The previous experiment showed that the performance of an E2E model trained

on a low-resource dataset (10% data) can be improved by adding additional ASR data

and training in a multi-task setting with AT-AT. In this experiment, we want to take

this a step further and evaluate if we can improve the performance of a model trained

on the full 100% dataset using any available external data. We pretrain AT-AT with

the full 100% SLU dataset and in addition, include two more tasks: ASR and MLM.

We use the LibriSpeech ASR and MLM datasets as described in the datasets section

for these two tasks. Note that these datasets are from a completely different domain

than music. We want to determine whether we can improve the performance of an

E2E model by adding tasks from other domains with transferable knowledge.

We evaluate our model in two settings. The first setting consists of pretraining

with 2 tasks, SLU and ASR, followed by finetuning on the 100% SLU dataset. The

second setting’s pretraining phase consists of 3 tasks, SLU, ASR, and MLM, followed

by finetuning again on the 100% SLU dataset. Our baseline is the E2E model trained
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Method SemER EM Accuracy

E2E Model w. 100% data baseline baseline
Production ASR, linear chain CRF +0.61 -1.02
Production ASR, BiLSTM + CRF -0.45 +0.70

AT-AT, SLU + ASR -1.16 +1.39
AT-AT, SLU + ASR + MLM -1.01 +1.23

Table 3.2. Results on an internal Amazon music dataset with 100% data. Our
AT-AT models trained with multiple tasks outperform a simple E2E model and other
production baselines.

on 100% music SLU data from the previous set of experiments. For context, we

also report numbers from two 2-stage pipeline models for SLU. We use a production-

level ASR system from Amazon for the first stage. For the second (NLU) stage, we

experiment with a linear chain CRF and a pretrained BiLSTM + CRF (SOTA). The

BiLSTM + CRF model beats transformer-based models for this dataset [69].

3.4.4.1 Results

We report the results of these experiments in Table 2.2. We again report relative

numbers here since this is in an internal dataset. We use the performance of the

E2E 100% model as the baseline. We see that adding LibriSpeech ASR data and

pretraining with AT-AT improves SemER on the internal music SLU test set by 1.16

points, representing a significant relative error reduction. The exact match accuracy

also improves by 1.4 absolute points here. With all three tasks, we see that the SemER

improves by 1.01 points, slightly worse than the previous number. We believe the lack

of further improvement from the MLM task might be because it doesn’t contribute

new information to the model.
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3.4.5 AT-AT on Public Datasets

In this set of experiments, we evaluate how AT-AT’s pretraining can help improve

performance on other datasets. We selected the publicly available FluentSpeech and

SNIPS Audio datasets to compare to state-of-the-art models.

We use the AT-AT model pretrained with 2 tasks from the previous experiment

and finetune it on the FluentSpeech and SNIPS datasets. We also trained end-to-end

models from scratch on these two datasets. To perform an ablation on the AT-AT

finetuning approach, we report an additional number on the SNIPS dataset, for a

model that uses a pretrained AT-AT audio encoder. This model, compared to the

full AT-AT model would give us an idea of how much the decoder pretraining helps,

in addition to the encoder pretraining.

3.4.5.1 Baselines

For the FluentSpeech dataset, we compare to two SOTA models. The first model

is the best model from [46]. It is a multi-layer RNN-based network, with lower layers

trained to predict aligned word targets from the LibriSpeech dataset. The final task

is formulated as a 3-way classification task, not a generation task like our AT-AT

model. The second model is a transformer-based pretrained model from [84].

For the SNIPS Audio dataset, we compare with the two models reported in [70],

SNIPS and Google. The SNIPS model consists of a pipe-lined approach with an

acoustic model for ASR, followed by a language model, and slot tagging model for

NLU. The Google model is from Google’s DialogFlow cloud service4.

3.4.5.2 Results

Table 3.3 reports the results on the FluentSpeech dataset. We report error rate on

the complete hypothesis (HypER), exact match accuracy on the hypothesis, and the

4https://cloud.google.com/dialogflow
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Method HypER
EM Accuracy
Hyp Full

E2E Model 8.3 91.7 83.4
SOTA 1 [46] 1.2 98.8 –
SOTA 2 [84] 1.0 99.0 –
AT-AT 0.5 99.5 99.0

Table 3.3. Results on FluentSpeech [46]. AT-AT outperforms the previous state-
of-the-art approaches and achieves 50% error reduction.

Method
EM Accuracy
Hyp Full

Close Field

SNIPS [70] 84.22 –
Google [70] 79.27 –
E2E Model no convergence
E2E Model with pretrained. AT-AT encoder 81.87 53.90
AT-AT 84.88 66.51

Far Field

SNIPS [70] 71.67 –
Google [70] 73.43 –
E2E Model no convergence
E2E Model with pretrained AT-AT encoder 67.83 38.92
AT-AT 74.64 53.25

Table 3.4. Results on SNIPS Audio [70]. AT-AT achieves state-of-the-art perfor-
mance, beating pipeline-based approaches.
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Method EM Accuracy Precision Recall F1 Tree validity

Synthetic Test Set

E2E Model with Synthetic Audio 78.73 80.84 79.27 80.05 99.13
AT-AT zeroshot 56.52 62.47 57.98 60.14 98.42
AT-AT zeroshot + Synthetic Audio 80.37 82.35 81.30 81.82 99.56

Real Test Set

E2E Model with Synthetic Audio 69.19 67.24 65.15 66.18 98.85
AT-AT zeroshot 51.54 51.31 49.80 50.55 98.96
AT-AT zeroshot + Synthetic Audio 70.60 67.98 66.39 67.18 99.37

Table 3.5. Results on the TOP audio test set we compiled. On both the synthetic
and real test utterances, our AT-AT model shows remarkable zeroshot performance
and when trained with additional synthetic audio data, it outperforms a simple E2E
model trained with the same data.

exact match accuracy on the full target sequence. While the end-to-end model doesn’t

perform too well from scratch, our AT-AT finetuned model beats the state-of-the-art

model by 0.5 accuracy points. This corresponds to a 50% error reduction.

Table 3.4 contains the results on the SNIPS dataset. We report the exact match

accuracy on the hypothesis and the full target sequence here. We see that our AT-

AT pretrained models have the best performance on both the close-field and far-field

sets with a 5-fold cross validation setup. They beat both Google and SNIPS models’

numbers previously reported. We also see that the AT-AT model is vastly superior

to an end-to-end model with a pretrained audio encoder. This is especially evident

with the accuracy scores on the full target sequence where the AT-AT model beats

it by 10-15 absolute points. Note that we weren’t able to train an end-to-end model

from scratch due to extremely small dataset size.

3.4.6 Zeroshot E2E with AT-AT

In the final experiments, we evaluate the performance of AT-AT on zeroshot end-

to-end tasks. Here, we only have text training data and we want to evaluate on

speech.

41



Method SemER EM Accuracy

E2E Model with Real Audio baseline baseline

E2E Model with Synthetic Audio +5.05 -9.58
AT-AT zeroshot +11.90 -15.14
AT-AT zeroshot + Synthetic Audio +3.31 -5.20

Table 3.6. Results on an internal Amazon books dataset. Our AT-AT model again
achieves remarkable zeroshot performance and when trained with additional synthetic
data, beats a simple E2E model trained with the same data.

We first pretrained AT-AT on 4 tasks: SLU (speech-to-hypothesis), ASR, MLM,

and NLU (text-to-hypothesis). We use data from the internal music dataset (for

SLU and NLU), and the LibriSpeech dataset for ASR and MLM. This model is then

finetuned on the internal books dataset and the Facebook TOP dataset with the text

NLU training data as described in the architecture section. We also finetune AT-AT

in another setting, using text NLU training data along with the synthetic speech

data from our TTS system. We want to show that in addition to performing zeroshot

prediction without access to a TTS system, we can also work with an existing TTS

system to further improve performance.

3.4.6.1 Baselines

For the internal books dataset, we built an E2E model on real audio training data

to obtain a rough upper bound and gauge the zeroshot performance. In addition to

this, we also trained another E2E model on the synthetic dataset constructed from

our TTS system.

For the TOP dataset, we don’t have real audio training data, so our baseline

was an E2E model trained on the synthetic training data. For a fair comparison to

AT-AT, we use the same pretrained audio encoder for these E2E models.
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3.4.6.2 Results

Tables 3.5 and 3.6 report results of the zeroshot experiments. On the internal

books dataset, we report relative numbers for SemER and EM accuracy. We use

the performance numbers of an E2E model trained on real speech data as baselines.

Using synthetic training data gives us a SemER of baseline + 5.05 points . AT-AT

achieves a zeroshot SemER of baseline + 11.90 without access to a TTS system, a

respectable number compared to the aforementioned model. AT-AT when finetuned

with additional synthetic speech data beats an E2E model trained on only synthetic

data, obtaining a SemER of baseline + 3.31 (lowest increase in error).

On the TOP dataset, we report all the recommended metrics given in the dataset

but we are primarily interested in exact match accuracy. Note that our test set was

compiled by recording speech for a fraction of the full test set. We observe the same

trend here that we observe on the books dataset. An E2E model trained on synthetic

data achieves an accuracy of 69.19 while AT-AT achieves 51.54. While there is a

significant drop, it is to be noted that AT-AT sees absolutely no new labeled audio

instances, giving it a significant disadvantage while switching input models during

inference. It also doesn’t require a TTS system for this training. The E2E model is

however beaten by the AT-AT model finetuned with additional synthetic data, which

achieves an accuracy of 70.60 (2% relative improvement).

3.5 Contributions

We propose the Audio-Text All-Task (AT-AT) model that uses transfer learning

to improve the performance on end-to-end SLU. AT-AT beat the performance of E2E

models on our internal music data, both in the full and low-resource settings. It also

achieved state-of-the-art performance on the FluentSpeech (99.5% EM Accuracy)

and SNIPS audio datasets (84.88% close-field, 74.64% far-field EM) with significant

improvements over prior models. AT-AT also demonstrated its ability to perform
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zeroshot E2E SLU, without access to a TTS system, and by learning a shared audio-

text representation without any explicit loss penalty to force the audio and text hidden

states into the same space. We also showed how AT-AT can work in conjunction with

a TTS system to further improve E2E performance. It achieves a zeroshot E2E EM

Accuracy of 70.60 on the TOP dataset.

On a closing note, we would like to remark that AT-AT somewhat mimics actual

human learning. We typically read a lot more words than we hear. But when we

hear a word for the first time, we transfer our knowledge of that word from when we

read it. AT-AT similarly learns to understand and perform NLU tagging from text

and then applies this knowledge when it is given speech.

3.6 Collaboration Statement

This chapter is adapted from Rongali et al. [68]. The work was done in collab-

oration with Beiye Liu, Liwei Cai, Konstantine Arkoudas, Chengwei Su, and Wael

Hamza from Amazon Alexa AI.
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CHAPTER 4

TRAINING SEMANTIC PARSERS WITH VERY LITTLE
DATA

4.1 Introduction

Semantic parsing is the task of mapping a natural-language utterance to a struc-

tured representation of the meaning of the utterance. Often, the output meaning

representation is a formula in an artificial language such as SQL or some type of

formal logic. Current SOTA semantic parsers are seq2seq architectures based on very

large language models (LMs) that have been pretrained on vast amounts of natural-

language text [69, 14]. To better capitalize on that pretraining, various researchers

have proposed to reformulate semantic parsing so that the output meaning represen-

tation is itself expressed in natural—instead of a formal—language, albeit a controlled

(or “canonical”) fragment of natural language that can then be readily parsed into a

conventional logical form (LF). We refer to this reformulation as the naturalization

of semantic parsing.

Naturalizing a semantic parser has significant advantages because the reformulated

task involves natural language on both the input and the output space, making it

better aligned with the pretraining LM objective. However, even with large-scale LM

pretraining, fine-tuning these models requires lots of data, and producing complex

annotations for semantic parsing is expensive. There has hence been great interest in

few-shot semantic parsing, where we only have access to a few annotated examples

[75, 90].

Techniques such as in-context learning and prompting [75], where the parsing task

is posed as a structured natural language input to an LM, have shown very promising
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results in few-shot scenarios when used with extremely large (and access-restricted)

pretrained LMs such as GPT-3 (175B parameters). However, the size and inaccessi-

bility of these models makes their use infeasible at present. Task-specific fine-tuning

of smaller LMs remains the best-performing approach that is practically feasible, and

is the one we pursue in this paper. We propose a simple but highly effective method-

ology for few-shot training of naturalized semantic parsers that can be used with

smaller and more ecologically friendly LMs (we use BART-Large, which has fewer

than 0.5B parameters) and can be quickly applied to bootstrap a high-performing

semantic parser with less than 50 annotated examples and a modest number of unla-

beled examples, which are typically readily available (and can be synthesized).

Our methodology is based on a judicious composition of four techniques: joint

training of the semantic parsing task with masking and denoising LM objectives;

constrained decoding, made possible because the canonical fragment of natural lan-

guage is generated by a simple grammar; self-training; and paraphrasing. For training

dataset sizes ranging from n = 16 to n = 200, our method consistently outperforms

previous BART-based and GPT-2-based few-shot SOTA results on all domains of the

Overnight dataset, in some cases delivering relative improvements exceeding 100%.

For n = 200, our method catches up to and slightly outperforms in-context learning

with GPT-3. We also provide results on Pizza, a new semantic parsing dataset, where

we demonstrate relative improvements over BART-based SOTA architectures ranging

from 20% to 190%.

We start with the best-performing finetuned naturalized model from Shin et al.

[75] as our baseline. This model is based on BART [40], which was chosen by the

authors because both the encoder and the decoder are pretrained. They also con-

strain their decoder to produce only valid canonical forms, using a method that filters

valid next tokens. The authors showed that these techniques greatly improve model

robustness and allowed models to train with just a few hundred examples.

46



get me a pepperoni pie 
MASK onions

… 
come three blues green 

peppers with
… 

let’s do two mediums 
with chicken and olives

...

i want two medium pizza 
with chicken and olives
…

i want three pizza 
with green peppers 
…

get me a pepperoni pie with 
extra cheese and onions
…M

as
k

N
oi

se
L

ab
el

Encoder Decoder

Joint Training

Figure 4.1. Jointly training a seq2seq model using mask prediction, denoising, and
supervised semantic parsing examples. The mask prediction examples help train
the encoder and the denoising examples help train the decoder, in addition to the
supervised examples that train the full model.

We pursue the same general direction here but propose a general methodology

that leverages modest amounts of unannotated data to deliver very significant im-

provements over that baseline model without needing additional effort from model

developers. Specifically, we use unlabeled user utterances to create a masked predic-

tion task, which allows the encoder to see and learn to encode utterances of interest.

We then add random noise to a generated target dataset to produce noisy source

sequences and create an additional denoising task. This task trains the decoder to

produce canonical forms effectively. We merge the source and target sequences from

both of these tasks along with the original labeled set and train a BART model. Fig-

ure 4.1 illustrates this process. During inference, we use constrained decoding, which

ensures that we only generate valid canonical forms. By augmenting the dataset

with additional examples that effectively adapt the encoder and decoder, we observe

massive improvements in semantic parsing accuracy over the baseline models that

are only fine-tuned on the labeled dataset. Apart from joint training (JT for short),

our method uses self-training [48, 20], or ST for short, and paraphrase augmentation

[16, 90]. Here, we take the model from the JT step and label all the unlabeled ut-

terances with constrained decoding. We also paraphrase all our utterances to create
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more data and label them in the same way. We then repeat the JT step with this

enlarged self-labeled dataset, the original golden labeled dataset, and the masked and

noised datasets. Since the self-labeling is done in a constrained manner, the labels are

corrected if our model slightly strays from the golden parses. Injecting this knowledge

back into the model helps it improve even further.

4.2 Methodology

4.2.1 Base model

Our starting architecture is based on the best fine-tuning model reported by Shin

et al. [75], which is a BART-Large [40] seq2seq model with canonical-form targets and

constrained decoding. Since this architecture uses canonical-form targets, both the

inputs and the outputs are English sentences. As an example from the Pizza dataset,

an input utterance like could i have a medium pie along with ham sausage but please

avoid bacon is mapped to the output target i want one medium pizza with ham and

sausage and no bacon. Canonical forms are defined by the domain developers and are

designed so that they can be easily parsed using simple rules to obtain a conventional

target LF.

Since the target canonical forms are user-defined and generated by a fixed grammar

from which the ultimate meaning representations can be recovered, we can constrain

the decoding in the seq2seq model to only produce valid sequences adhering to that

grammar. We do this by defining a validNextTokens function that takes the tokens

generated so far as input and returns the valid set of next tokens. During beam

search, we adjust the logits to filter out invalid tokens.

4.2.2 Joint Training

We now describe our novel JT technique. While the base architecture was shown

to perform well with dataset sizes of around 200, we observed that there is a lot of
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room for improvement when the number of annotated examples falls further (to 48,

32, and 16 examples). Our key idea was to introduce auxiliary tasks constructed

from easily-obtainable unsupervised data, and jointly train the model on these tasks,

in addition to the semantic parsing task with a very small number of labeled exam-

ples. While labeling utterances is expensive, one can assume access to a larger set of

unlabeled utterances. This assumption holds especially true for commercial voice as-

sistants, which can record de-identified live traffic from participating customers. But

even when bootstrapping new semantic parsers in a cold-start scenario, it is much

easier to come up with utterances that need to be supported than it is to annotate

these utterances. We can also generate a lot of target parse trees or canonical forms

automatically, by sampling and generating from the target grammar. For example,

we can generate sample pizza orders and create corresponding canonical forms. Given

such data, we construct two tasks, Mask Prediction and Denoising, to augment the

regular task.

4.2.2.1 Mask Prediction

Our first auxiliary task is focused on improving the encoder. We would like the

encoder to see and learn to encode real source utterance sequences. To accomplish

this, we use the unlabeled user utterances to construct an infilling-style mask pre-

diction task. We mask spans of tokens in the same style as the BART pretraining

objective. As an example where we mask a span containing roughly 25% of the to-

kens, the source is i’ll go for five pizzas along with MASK but avoid sausage and the

target is i’ll go for five pizzas along with mushrooms and onions but avoid sausage.

This task can be viewed as a form of domain adaptation, where the BART pretrain-

ing is continued on domain-specific data. It hence acts as a potential regularizer that

stabilizes training with a small downstream task dataset. However, as we will show
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later, integrating it with the regular task via JT is more effective than first adapting

and then only fine-tuning on the labeled data.

4.2.2.2 Denoising

Our second auxiliary task is focused on improving the decoder. For this, we

use the synthesized target canonical forms. These target canonical forms can be

synthesized easily by randomly sampling from the target grammar. With the pizza

dataset for example, this just corresponds to randomly creating various pizza orders

and constructing their canonical forms. With a dataset like Overnight, it corresponds

to generating random database queries from the query grammar.

Once we have a large set of random targets, we create a noisy version to use as the

source sequences for a denoising task. We only add noise to the non-content tokens,

i.e., tokens that do not interfere with entity names or intents. We do this to ensure

that the model does not hallucinate. The choice of canonical forms which contain

natural language instead of parse trees is also important here, as it allows us to easily

add such noise. The noise itself consists of a set of manipulations on tokens. We

randomly choose from the five following operations to apply to tokens with a certain

probability:

• Delete: Delete a token.

• Replace: Replace a token with a token randomly sampled from the vocabulary.

• Swap: Swap two consecutive tokens.

• Insert: Insert a randomly sampled token.

• Duplicate: Duplicate a token.

An example of a noisy source sequence is dishes want pizza one notified banana

peppers uty pickles, where the target is i want one pizza with banana peppers and
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pickles. Once we construct the mask prediction and denoising datasets, we combine

them with the labeled semantic parsing examples. We then shuffle the entire dataset

and train the BART seq2seq model. Note that we do not introduce any weights or

custom loss functions. We simply use the original sequence prediction loss to train

on the new augmented dataset, as shown in Figure 4.1. We also do not explicitly

differentiate between different task examples. The model learns to do mask prediction

when it sees a MASK token. If not, it tries to generate a canonical form target

sequence. We further ensure this is the case during inference by using constrained

decoding.

4.2.3 Self-Training and Paraphrasing

To further improve upon JT, we introduce two enhancements: self-training and

paraphrase augmentation. While both have been previously explored in isolation, we

show that they work better in tandem with JT.

Self-training is a popular semi-supervised learning technique that has been ex-

plored across a wide range of applications to improve models with limited annotated

data [48, 50]. The key idea is to first build a model with the existing labeled data and

then use it to annotate an unlabeled dataset in order to obtain noisy annotations (sil-

ver labels). The model is then retrained with the combination of the original golden

plus the silver data. This approach typically works well in low-resource scenarios for

classification-style tasks or tasks with limited annotation diversity. It also requires a

reasonable initial checkpoint to obtain the silver annotations.

We use our joint trained model as the initial checkpoint to label data. We make

the self-training approach more effective for our generation-style task with some im-

portant design choices. The constrained decoding improves the label quality of the

silver annotations and injects additional knowledge to retrain the model. We also add

the mask prediction and denoising datasets to better retrain the model. Note that
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we do not perform any confidence-based filtering or re-ranking on the silver labels

since partially correct data might still help the decoder and confidence scores aren’t

reliable [12], especially with constrained decoding. We simply obtain predictions for

all unlabeled data and use them to retrain the model, making this a straightforward

enhancement.

A significant improvement comes from the data diversity introduced by self-

training. By labeling unannotated utterances and augmenting the training dataset,

the retrained model sees a larger variety of utterances. To further increase this variety,

we propose paraphrase augmentation.

Paraphrasing is an effective way to obtain similar sentences with different surface

forms. Since most neural paraphrasing models are noisy, especially when applied to

out-of-domain data, we cannot assume that the semantics of the paraphrases are still

captured by the original golden annotations. Instead, we rely on the self-training

approach and use the JT model to label the newly generated paraphrases. We found

that the diversity from the silver labeled utterances from these techniques is useful

upto a certain size, at which point the label noise overpowers the diversity gains.

For our experiments, we built a paraphrasing model by training a BART-Large

model on 5m examples from the ParaNMT dataset [86] for two epochs. As an example,

how many all season fouls did kobe bryant have as an la laker is paraphrased as how

many fouls did kobe bryant have as a lakers player. These are not exact paraphrases

but still serve as new utterances for self-training.

4.2.4 Bringing it all together

To summarize, we start with a BART-Large seq2seq model. We convert the target

LFs into canonical natural-language forms and implement constrained decoding to

ensure that the generated tokens represent valid canonical forms. This is our base

architecture. We train this base model using JT with mask infilling and denoising
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as additional auxiliary tasks, along with semantic parsing using the limited labeled

data. This produces our first model.

We use that model to label any available unannotated utterances. We also train

a paraphrasing model and use it to paraphrase all the utterances, and we label the

paraphrases with the same model. We then augment the JT data with these newly

labeled examples and retrain the model. We get two more models in this step, one

that uses the paraphrased data and one that does not.

4.3 Evaluation

4.3.1 Datasets

We evaluate our techniques on two datasets: Pizza1 and Overnight [85]. We use

three low-resource settings: 16, 32, and 48 labeled examples. These are randomly

sampled from the full original datasets.

Pizza is a recently introduced dataset consisting of English utterances that repre-

sent orders of pizzas and drinks. The target parse is a LF that specifies the various

components of the relevant pizza and drink orders. An example from this dataset

was given in Section 4.2.1. We defined a canonicalization scheme for pizza and drink

orders via a rule-based parser that can go from the canonical form to the LF and

conversely.

The original Pizza dataset contains a synthetic training set, and real dev and test

sets. For our experiments, we use the dev set to choose example for low-resource

training. For the denoising task, we randomly sample 10k target parses from the

original synthetic training set and construct their canonical forms to simulate random

pizza orders.

1https://github.com/amazon-research/pizza-semantic-parsing-dataset
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Overnight is a popular semantic parsing dataset that consists of 13,682 examples

across eight domains. The task is to convert natural language utterances to database

queries, which are then executed to obtain the results for the user utterances. We

have access to the utterance, canonical form and the corresponding database query

for all examples. An example from the basketball domain is the utterance which team

did kobe bryant play on in 2004, whose canonical target is team of player kobe bryant

whose season is 2004.

To generate queries for the denoising task, we use the SEMPRE toolkit [2], upon

which the Overnight dataset was built, to generate sample queries for each domain

from its canonical grammar, consisting of around 100 general and 20-30 per-domain

rules.

For both datasets, for paraphrase augmentation, we generate four paraphrases

for each utterance in the training set. We use the BART-Large model trained on

ParaNMT data and take the top four sequences from beam search decoding at in-

ference. For constrained decoding, we follow the approach of Shin et al. [75] and

construct a large trie that contains all the canonical form sequences, and use it to

look up valid next tokens given a prefix.

4.3.2 Baseline Models

We compare our models to the best fine-tuned model from Shin et al. [75], a

BART-Large seq2seq model with canonical-form targets and constrained decoding,

which we use as our base architecture. This model is trained on the same data as our

JT models in the low-resource settings. We also compare to a fully trained version of

this model, trained on all available training data.

4.3.3 Metrics

We report the recommended variants of exact match (EM) accuracy for both Pizza

and Overnight datasets.
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Unordered Exact Match Accuracy : For Pizza, we report unordered EM accuracy.

This accounts for parses which have identical semantics but vary in their linearized

representations due to differences in sibling order.

Denotation Accuracy : For Overnight, we report denotation accuracy. We execute

the golden and predicted queries on the database and check for an exact match on

the results. This accounts for any surface-level differences in the database queries

that disappear upon actual execution.

4.3.4 Model Details

We use BART-Large as our base architecture. It contains 12 transformer encoder

and decoder layers, 16 attention heads, and embeddings of size 1024 (∼ 458 million

parameters).

We train all our models with sequence cross entropy loss using the Adam opti-

mizer with β1 = 0.9, β2 = 0.98, ϵ = 1e − 9 and the Noam LR scheduler [81] with

500 warmup steps and a learning rate scale factor of 0.15. JT models are trained for

10 epochs, while base models are trained for 100 to 1000 epochs on the low-resource

data. We fix the batch size to 512 tokens for all models. We use dropout of 0.1 and

freeze the encoder token and position embeddings during training. During inference,

we use beam search decoding with beam size 4. We did not perform any explicit hy-

perparameter tuning. Additional details, including the pizza canonicalization scheme,

are provided in Appendix B. Data files can be found on our project page2.

4.3.5 Results

Table 4.1 shows the performance of our models and baselines on Pizza. A fully

trained BART model with canonical-form targets and constrained decoding (trained

on the full dataset of 348 examples) achieves an unordered EM accuracy of 87.25%.

2https://github.com/amazon-research/resource-constrained-naturalized-semantic-parsing
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Unordered EM Accuracy

n=16 n=32 n=48

Baselines

BART Canonical 16.95 53.35 58.36

Our models

JT 42.23 64.70 70.30
JT + Self Training 49.89 63.23 72.07
JT + Self Training + Paraphrasing 48.19 64.55 73.10

Reference

Full BART Canonical 87.25 (n = 348)

Table 4.1. Results on Pizza. Our models consistently outperform baselines across
all data sizes and bridge the gap to a fully trained model. The improvement is
especially stark with 16 examples.

That is the SOTA result on this dataset. However, when the training data is reduced

to 16 examples, the score drops to 16.95%. We see similar significant drops with 32

and 48 examples, with scores of 53.35% and 58.36% respectively. JT gives a huge

boost to all three settings. With 16 examples, the accuracy jumps to 42.23%, with 32

examples to 64.70%, and with 48 examples to 70.30%. Self-training and paraphrase

augmentation provide further boosts in the 16 and 48 example settings. Overall, we

see that our best scores greatly improve the performance of the base architecture.

This effect is most apparent in the 16 example setting, where we obtain an almost

3× improvement.

We see similar result trends with the Overnight dataset. Table 4.2 shows the

denotation accuracies of all models across all eight domains. Our JT models attain a

significant improvement over the baselines and bridge the gap towards fully trained

models across all domains. The trend is especially noticeable in the calendar and

recipes domains in the 16 example setting, where the denotation accuracies jump

from 23.21% and 28.70% to 56.55% and 53.70% for our best models, respectively, a

2× boost on average.
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Basketball Calendar Publications Restaurants

n=16 n=32 n=48 n=16 n=32 n=48 n=16 n=32 n=48 n=16 n=32 n=48

Baselines

BART Canonical 41.43 58.57 68.29 23.21 35.71 63.10 29.81 42.86 55.90 20.18 48.19 55.12

Our models

JT 48.85 63.17 68.29 51.19 58.33 62.50 52.80 49.69 59.63 58.43 64.46 66.57
JT + ST 56.52 66.75 71.61 56.55 57.74 66.67 60.87 57.76 62.11 65.96 71.99 65.36
JT + ST + Paraphrasing 58.06 66.24 70.84 55.95 55.95 67.26 59.63 55.90 62.73 65.66 69.58 69.28

Reference

Full BART Canonical 89.51 (n = 1561) 85.12 (n = 669) 84.72 (n = 864) 82.18 (n = 3535)

Blocks Housing Recipes Social

n=16 n=32 n=48 n=16 n=32 n=48 n=16 n=32 n=48 n=16 n=32 n=48

Baselines

BART Canonical 27.07 21.05 30.33 15.87 43.92 37.57 28.70 38.43 46.76 28.73 40.50 45.02

Our models

JT 36.34 36.84 48.37 45.50 58.73 60.32 48.61 60.19 63.89 24.21 39.48 53.17
JT + ST 38.85 38.60 51.38 52.91 64.02 61.38 52.78 58.80 65.74 36.09 48.30 57.01
JT + ST + Paraphrasing 39.35 39.60 49.87 52.38 64.55 61.38 53.70 60.19 66.20 31.45 45.25 58.14

Reference

Full BART Canonical 69.67 (n = 1596) 80.42 (n = 752) 83.85 (n = 640) 88.25 (n = 1325)

Table 4.2. Results on Overnight [85]. We report the denotation accuracy here. We
again see that our models consistently outperform the baselines across all data sizes
and domains, sometimes by up to 40% in the 16-example setting.

We wanted to analyze how far these improvements hold, so we repeated the ex-

periment with 200 examples on the Overnight dataset. This also allows us to make a

more direct comparison with some prior works that reported results for this setting.

Table 4.3 presents these results. We see that our proposed techniques improve the de-

notation accuracies across all the domains over our baseline BART model by roughly

5 absolute points on average. Overall, they even slightly outperform the much larger

and access-restricted GPT-3 model reported by Shin et al. [75].

4.3.6 Analysis

We analyzed some of our design decisions with experiments on the Pizza dataset.

A detailed analysis can be found in the Appendix B. We summarize some of our

findings here.
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Basketball Blocks Calendar Housing Publications Recipes Restaurants Social

Baselines

BART Canonical (our version) 84.7 55.4 77.4 68.3 73.3 75.5 75.3 69.7
BART Canonical [75] 86.4 55.4 78.0 67.2 75.8 80.1 80.1 66.6
GPT-3 [75] 85.9 63.4 79.2 74.1 77.6 79.2 84.0 68.7
Cao et al. [5] 77.2 42.9 61.3 55.0 69.6 67.1 63.9 56.6

Our models

JT 84.9 62.7 81.0 74.1 78.3 79.6 79.8 69.0
JT + ST 87.7 62.4 82.1 74.1 79.5 81.9 80.7 69.2
JT + ST + Paraphrasing 86.7 63.4 83.3 73.5 80.1 78.7 81.0 69.9

Table 4.3. Results on Overnight [85] with 200 training examples. We outperform or
match prior models on most domains, even outperforming prompting on the massive
GPT-3 model which has almost 400x parameters.

Two-stage Finetuning : Our JT approach, while being simpler, does at-least as

well or better than a two-stage finetuning process, where the auxiliary tasks are first

used to pretrain the model and then the annotated data is used to finetune it. We

see a noticeable drop in accuracy with the extra fine-tuning step for 32 (65% → 59%)

and 48 (70% → 67%) examples, and no significant boost for 16 examples.

Importance of the canonical form: For our JT technique, the canonical form pro-

vides us with an easy way to add meaningful noise without modifying the content

tokens for the denoising auxiliary task. We can simply perform token level operations

without worrying about the target structure. If the targets are parse trees, adding

noise is trickier, since most of the tokens in the parse represent content and meaning-

ful operations need to be performed at the tree level. Further, the target sequences

for the mask prediction task are in natural language and are better aligned with

the canonical form targets than the parse trees. This potentially allows for better

knowledge transfer during joint training.

We performed a JT experiment with a model that predicts tree LFs instead of

canonical forms. We created the source sequences for the denoising auxiliary task

using tree-level noise operations such as switching entities, dropping brackets, and

inserting random tokens. We found that the resulting models achieved significantly
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lower scores than the models that use canonical targets. For the 48 example case, the

LF model achieves 59% accuracy compared to our JT model’s 70%.

Synthetic data auxiliary task : The goal of our auxiliary tasks was to provide the

model with a challenging objective. To train the decoder, we use the synthetically

generated target sequences so that the decoder can train on, and learn to generate, a

variety of valid canonical forms. To create a challenge for the decoder, we noise the

targets to obtain corrupted source sequences and create a denoising task.

However, there are other possible tasks. One could create rules to generate syn-

thetic utterances given the target parses. This synthetic data could then be used to

train the decoder. This approach, however, requires manual effort and depends on

the quality and diversity of the synthetic data. For Pizza, we already have access to

synthetic data, since the entire training set is synthetic. Assuming we have access

to a system that can generate such synthetic utterances given randomly generated

target parses, we could replace our denoising task with the synthetic examples. We

perform this experiment to compare these two auxiliary tasks. The synthetic model

achieves 82% accuracy compared our denoising model’s 70% in the 48 example case.

The synthetic parsing auxiliary task performs better than denoising but requires lots

of manual effort to create a synthetic utterance grammar. Our JT approach is directly

applicable to both tasks.

4.4 Related Work

Naturalized semantic parsing can be traced back to work by Berant and Liang [3],

who introduced the idea of canonical natural-language formulations of utterances.

Our base architecture is based on work by Shin et al. [75]. There have been other

approaches that explored low-resource semantic parsing in the past, which used con-

cepts from meta-learning, self-training, and synthetic data generation [20, 90, 48].
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Our model, however, is designed to be applicable to extremely small data sizes with-

out requiring any external manual effort.

Wu et al. [87] have explored solving unsupervised semantic parsing as paraphras-

ing by decoding fixed paraphrases using a synchronous grammar. They hence require

a carefully crafted synchronous grammar, unlike our method which relies on readily

available data for auxiliary tasks.

Recently, there has also been an upward trend towards in-context learning or

“prompting” approaches in low-resource settings [4, 75]. In these approaches, massive

LMs are directly used to solve tasks without any training by framing the task as a

prompt in the style of the pretraining objective, with a few task demonstrations

selected from the handful of annotated examples. However, only GPT-3 has been

shown to work well with a generation-style parsing task; smaller architectures, such

as GPT-2, could not replicate the performance [75]. GPT-3 is a 175-billion parameter

model that is currently not accessible by the entire research community.

Our JT technique can be seen as a mixture of domain adaptation of the pretrained

LM and a regularizer. GRAPPA [93] is a recent effort that improves table semantic

parsing using a separate pretraining phase, where the model is trained on synthetic

parsing data and table-related utterances for domain adaptation before fine-tuning on

a small annotated dataset of around 10k examples. Our work is similar to GRAPPA

but focuses on much smaller training datasets, which requires us to train our model

jointly with auxiliary tasks to make it more robust. We also show that denoising

canonical forms is a reasonable auxiliary task.

At a high level, our approach also has some similarities to the work of Schick and

Schutze [73], who also aim to show that smaller—and greener—LMs can be effective

few-shot learners. They also utilize unlabeled data and a form of self-learning to

augment a small amount of golden annotations. However, they focus on classification

rather than generation tasks (reducing classification tasks to MLM).
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Constraining the decoder of a neural semantic parser so that beam search only

considers paths that adhere to various syntactic or semantic constraints has been

widely explored over the last few years [37, 91]. Xiao et al. [89] show that constrained

decoding can result in significant latency improvements.

4.5 Contributions

Our key idea is the application of joint training to train models with auxiliary

tasks constructed from easily available unlabeled data in addition to the semantic

parsing task with the limited annotated dataset. We also introduce a self-training

step and a paraphrase augmentation step to augment the joint training data and

further improve model performance.

We start with a strong baseline architecture that uses a BART-Large model,

canonical-form targets, and constrained decoding, and show that our techniques pro-

vide massive improvements, in the order of 2–3× on EM scores. We evaluate our

models on two datasets, Pizza and Overnight (the latter containing eight separate

domains), and on three data sizes: 16, 32, and 48 examples. Models trained with

our techniques consistently show improvements over baseline architectures across all

datasets and size settings. The improvements are especially notable in the scarcest

setting with 16 annotated examples. We analyze our model design and results in an-

other series of experiments and show the effectiveness of our approach in constructing

a robust, well-performing model.

4.6 Collaboration Statement

This chapter is adapted from Rongali et al. [67]. The work was done in collabo-

ration with Konstantine Arkoudas, Melanie Rubino, and Wael Hamza from Amazon

Alexa AI.
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CHAPTER 5

ZERO-SHOT DOMAIN ADAPTATION AND UNIVERSAL
SEMANTIC PARSING

5.1 Introduction

In this chapter, I describe proposed upcoming work. I plan to explore approaches

for low-resource domain adaptation for task-oriented semantic parsing, specifically in

the zero-shot setting.

Current semantic parsing models are trained on large amounts of annotated data

from the predetermined set of domains. To increase the capabilities of the voice

assistant to handle a new domain, we need to collect lots of annotated data for

the new domain and re-train its semantic parsing model. This process is expensive

and time-consuming and needs to be performed for each set of new domains. To

combat this problem, researchers have proposed semantic parsing models that can

be efficiently trained with fewer examples (few-shot) [76, 47, 19, 75, 9]. While this

is a great first step, these models don’t eliminate the problem entirely. They are

typically evaluated on utterances from the new domain by first pretraining on data

from existing domains and then finetuning on a few examples from the new domain.

The performance of these models on the original domains drops in this scenario and

this could be detrimental in production for a voice assistant. Furthermore, these

models still require some examples from the new domain to perform finetuning. They

cannot perform universal semantic parsing, where the voice assistant is given a large

intent-slot schema covering many different aspects and requested to parse an utterance

into that schema.
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Figure 5.1. Proposed seq2seq model for Zeroshot Semantic Parsing for new domains.
The target embedding and output layers are tied and replaced by embeddings from
a span encoder that encodes the intent and slot tags from the new domain.

To achieve universal semantic parsing while maintaining high performance on

domains with annotated data, we require models that can perform completely un-

supervised (zero-shot) domain adaptation. In this scenario, the goal is to build a

parsing model from just the annotated data from some domains that when given ac-

cess to documentary information from a new domain, can effectively parse utterances

in the new domain without any new annotated examples. To this end, I propose a

model called Concept-Seq2Seq. Concept-Seq2Seq is based on our state-of-the-

art semantic parsing model from Chapter 2, Seq2Seq-Ptr [69] that uses sequence

to sequence models and a pointer generator network to decode the target semantic

parse. We augment Seq2Seq-Ptr with a concept encoder that encodes intents and

slots from the schema and uses those encodings to conditionally decode the semantic

parse. Figure 5.2 shows the architecture of our proposed model.

Concept-Seq2Seq can be trained on annotated data from the given domains

and during inference, all intents and slots from the schema, including new, unseen

ones, can simply be encoded into the learned concept space, to decode the target parse.

This model has the same time complexity as the original Seq2Seq-Ptr model but
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comes with the added benefit of now being able to effectively parse utterances from

unseen domains without any re-training. I also propose a pre-training scheme for

Concept-Seq2Seq using an entity-centric processed version of Wikidata [83] called

WikiWiki [41] to help it better encode unseen concepts.

There have been a few zero-shot semantic parsing approaches proposed in the past

but they either only covered simple slot-filling style utterances [1, 39] or compositional

utterances that also came with carefully crafted intermediate representations and

context-free grammars [26, 88]. Our proposed model can perform zero-shot domain

adaptation for compositional semantic parsing for parses with nested intents and slots

but also doesn’t require any grammars, whose construction effort, one could argue, is

possibly more than the effort required to annotate a few examples.

We plan to evaluate Concept-Seq2Seq on two datasets: TOP v2 [6] and SNIPS

[7]. Our goal is to report the first zero-shot performance number on the TOP dataset,

which consists of complex utterances, and also show that our model achieves compara-

ble zero-shot performance to other state-of-the-art models on the SNIPS dataset. We

also plan to evaluate our model on in low-resource settings and compare to previous

best-performing models in literature

5.2 Related Work

Zeroshot domain adaptation for task-oriented semantic parsing has been previ-

ously explored for simple flat queries with single intents and disjoint, non-overlapping

slots. Bapna et al. [1] and Lee and Jha [39] encode the lexical tag features and create

a token-tagging schema to create the final semantic parses. Yu et al. [92] solve the

task using a retrieve-and-fill mechanism. We plan to use a baseline model for simple

queries (SNIPS dataset) based on these approaches.

For complex utterances with nested structures, zeroshot semantic parsing has been

explored using intermediate, concept-agnostic logical forms [26, 11, 66] or natural
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language canonical forms [88]. These approaches apply to semantic parsing datasets

which have context free grammars and specified rules, such as database or knowledge

graph queries. The effort to craft these grammars for task-oriented semantic parsing

in a voice assistant setting could quite possibly be greater than annotating utterances.

A more relevant class of approaches for our proposed work are ones that solve task-

oriented semantic parsing for complex utterances in a few-shot setting using lexical

tag features. Shrivastava et al. [76] and Mansimov and Zhang [47] modify the seq2seq

architecture from Rongali et al. [69] to perform non-autoregressive style decoding and

show that their models perform better in a few-shot setting. Ghoshal et al. [19] use

adaptive label smoothing, a model-agnostic technique. Shin et al. [75] proposed a

prompting-style approach where custom instructional prompts filled with handful of

annotated examples and an unsolved utterance are fed as input to GPT-3 to directly

produce a semantic parse. Their approach is extremely slow and cannot be easily

adapted into a zeroshot framework. Shrivastava et al. [77] explore a retrieve-and-fill

style approach where they retrieve the best scenario, an intermediate logical form

consisting of the semantic frame and abstracted out tags, from a scenario bank of all

supported semantic parses. Their approach is contingent on the availability of this

scenario bank which could possibly entail more effort than annotating utterances.

Mueller et al. [53] and Desai et al. [9] use lexical features from intent and slot

names to create an inventory and use it as input to train semantic parsers for new

domains. Mueller et al. [53] also pretrain their model to improve generalizability but

only evaluate it on an intent classification task. Desai et al. [9] evaluate their model

for full sequences and our model is similar to theirs. However, we plan to use our

inventory to create custom decoder embeddings in a seq2seq model, which removes

any input size issues that their model will encounter with large inventories. We also

plan to pre-train our model with Wikidata and evaluate it in a completely zero-shot

setting, in addition to few-shot.
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5.3 Proposed Methodology

In this section, I describe our proposed model, Concept-Seq2Seq in detail.

Like Seq2Seq-Ptr, it consists of a sequence-to-sequence encoder-decoder compo-

nent, augmented with a pointer generator network to constrain the target decoding

vocabulary. Since our task at hand is to perform zero-shot semantic parsing with

just documentary information about the new domain, we modify the architecture

of Seq2Seq-Ptr to incorporate information about new intents and slots from new

domains by adding a concept encoder. Section 5.3.2 describes this proposed archi-

tecture in detail. To help our model learn to parse utterances from unseen domains

better, we also propose a pre-training scheme to incorporate general concept parsing

knowledge into it. Section 5.3.3 describes this concept pre-training scheme. Before

we get to these sections, we first recall the source and target sequence formulation for

the semantic parsing task from Chapter 2 below.

5.3.1 Task Formulation

Our proposed model solves semantic parsing as a sequence-to-sequence task, where

the source sequence is the utterances and the target sequence is a linearized represen-

tation of the semantic parse. We modify the target sequence to only contain inten-

t/slot tags or pointers to utterances tokens. An example source and target sequence

from the TOP dataset are given below.

Source: How far is the coffee shop
Target: [IN:GET_DISTANCE @ptr0 @ptr1 @ptr2 [SL:DESTINATION

[IN:GET_RESTAURANT_LOCATION @ptr3 [SL:TYPE_FOOD @ptr4
SL:TYPE_FOOD] @ptr5 IN:GET_RESTAURANT_LOCATION]
SL:DESTINATION] IN:GET_DISTANCE]

Each @ptri token here points to the ith token in the source sequence. So @ptr4

corresponds to the word coffee.
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5.3.2 Model Architecture

Concept-Seq2Seq consists of three main components: an encoder, a decoder,

and a concept encoder. Just like in traditional sequence-to-sequence models, the

encoder encodes the source sequence, and the decoder autoregressively decodes the

target sequence. However, since the target sequence in zero-shot parsing can contain

intent and slot tags that the model hasn’t seen during training, our models needs

to be able to incorporate new intents and slots, or concepts, and decode the target

sequence accordingly. The concept encoder helps us do this by encoding documentary

information about new concepts and creating vector representations that we can use

while decoding the target sequence.

Specifically, for an input sequence [x1 . . . xn], we first encode it using the encoder

into a sequence of hidden states e1 . . . en. Then, having generated the first t − 1

tokens, the decoder generates the token at step t as follows. It first produces the

decoder hidden state at time t, dt by building a multi-layer, multi-head self-attention

on the encoder hidden states and the decoder states so far. This step is based on the

transformer decoder from [81]. In a traditional sequence-to-sequence generation task,

dt is then fed into a dense layer to produce scores over the target vocabulary.

Our target vocabulary consists of pointer tokens and the concept tags. Since we

do not have access to all concept tags at the time of training, we train our model

to incorporate documentary information about concepts instead of using a fixed-size

dense layer. To do this, we encode intent and slot concepts using a concept encoder.

We first create a description for each token using the documentary information we

have at hand. We include multiple features such as, is it a begin or end tag, is it

an intent or a slot token, any textual description, and if available, a few examples.

The textual description could be as simple as just making the tags more natural by

removing special characters. For example, the description for the intent tag token

[IN:GET DISTANCE looks something like “begin get distance intent”. Similarly, for
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SL:DESTINATION], it looks something like “end travel destination slot”. We describe

all the concept descriptions we use for different experimental settings in the evaluation

section and include them our repository.

Given m concept tokens and their descriptions, the concept encoder encodes each

of them to produce concept vector representations [c1 . . . cm]. We then use the com-

puted decoder hidden state at t, dt, as the query and compute unnormalized attention

scores [s1 . . . sm] with [c1 . . . cm], and [a1 . . . an] with [e1 . . . en]. Concatenating all these

scores, we obtain an unnormalized distribution over m+n tokens, the first m of which

are the intent and slot tagging tokens from the concepts, and the last n of which are

the @ptri(0 < i < n) tokens pointing to the source sequence. We feed this through

as softmax layer to obtain the final probability distribution. This probability distri-

bution is used in the loss function during training and to choose the next token to

generate during inference. For the target token embeddings in the decoder, we use

a set of special embeddings to represent the @ptri tokens and [c1 . . . cm] to represent

the concept embedding.

Figure 5.1 shows this process in action on a toy example. The model is decoding

the next token after SL:genre at step 5. To do this, the model computes the pointer

attention scores [a1 . . . an] (blue, left) and the concept token attention scores [s1 . . . sn]

(green, right). The highest overall score is for the token @ptr2, corresponding to the

word country in the source sequence, so the next predicted token is country.

5.3.3 Concept Pre-training

Concept-Seq2Seq has the ability to incorporate new, unseen concepts while

parsing using the concept encoder. However, if the unseen concepts are semantically

very different from ones seen during training, the model might struggle with over-

fitting. To allow the model to generalize better, we propose a pre-training phase,

where the we train our model to encode a multitude of concepts and use them to parse
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context:
He is a member of 
The Soul Seekers

The Soul Seekers
Musical group

entity
entity type

Figure 5.2. An example sentence from the Wikiwiki dataset with the associated
mention, entity, and type fields. The full hyperlinked sub-span is extracted as the
mention and the entity and type are extracted from the target page.

sentences. We use an entity-centric dataset created from Wikidata called Wikiwiki

[41] for this purpose.

The Wikiwiki dataset curates mentions, entities, and entity types from 10M

Wikipedia documents using hyperlink information linking sub-spans of text in sen-

tences to other Wikipedia pages. The hyperlink is considered the mention, and the

entity and the type information are extracted from the new page. For further details

on this processing, please refer to Li et al. [41]. This dataset contains around 2m

entities and 40K entity types.

Each example in the Wikiwiki dataset consists of a context, which is a paragraph

from a wiki page, mentions, which are sub-spans of text that link to another page,

entities, which correspond to each mention, and entity types, which describe the type

of the entity. We extract individual sentences from this dataset and use them to train

Concept-Seq2Seq to learn to encode a wide variety of concepts using the entity

type fields as descriptions and tag the relevant mentions in the sentence. Figure 5.2

shows an example sentence from this dataset and the different fields. The source and

target sequences for pre-training, and the descriptions of the concept tags for this

example are given below.

Source: He is a member of The Soul Seekers
Target: @ptr0 @ptr1 @ptr2 @ptr3 @ptr4 [Q215380 @ptr5 @ptr6 @ptr7
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Q215380]
Concept descriptions:

[Q215380: begin musical group
Q215380]: end musical group

During training, we collect all the concept tokens within a training batch and use

them to create in-batch negatives for decoding task. We do this since it is extremely

inefficient to encode all 40K × 2 concept token descriptions (begin and end) from

Wikiwiki in every step.

5.4 Initial Results

We ran some initial experiments on the TOP v2 dataset. For these experiments,

we only performed the training step on a fixed set of domains. We didn’t perform

the concept pre-training step. Also, we simply used tag names from the dataset

as descriptions. We plan to repeat the experiments by augmenting the names with

manual descriptions (we will create them) and example spans in the near future.

TOP has eight domains. We used a leave-one-out approach where given n domains,

we train models on annotated data from n − 1 of them and evaluate on utterances

from the left out domain for zero-shot domain adaptation. We report exact match

(EM) accuracy and F1.

We use a transformer encoder, initialized from a roberta-base checkpoint, for

Concept-Seq2Seq. The decoder is a transformer decoder initialized from scratch

and it contains 6 layers, 8 heads, and a hidden state size of 768. The concept encoder

is also a transformer encoder and it is initialized from a bert-base-uncased checkpoint.

We choose a BERT-based model here since it is pre-trained to compute a vector

for the whole sequence using the CLS token, which is what we need for encoding a

concept consisting of a multi-word description.
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Alarm Timer Music

Zero-shot

F1 score 71.04 55.65 14.34
EM Accuracy 53.43 0.51 0.12

Fully-trained

EM Accuracy - 86.03 80.89

Table 5.1. Initial results on TOP v2. Vanilla Concept-Seq2Seq does well on the
alarm domain, but currently fails on timer and music domains.

We train our models using sequence cross entropy loss and an Adam optimizer

with learning rate 2e−5 and ϵ = 1e−8, warm-up proportion 0.1, weight decay 0.01.

The number of epochs is set to 100 but we use early stopping with a patience of 5.

Table 5.1 contains some initial results of Concept-Seq2Seq on three domains

of TOP v2. For the fully-trained results, we use the checkpoint trained without alarm

utterances, meaning it has been trained on timer and music domains and we see exact

match accuracy scores comparable to current fully-trained state-of-the-art semantic

parsing models. Table 5.2 contains some generated parses by Concept-Seq2Seq.

In the zero-shot setting, we see that Concept-Seq2Seq does well on the alarm

domain. It achieves an exact match accuracy of 53.43 in the vanilla setting without

pre-training or manual descriptions. This is pretty close to the score of 62.13 EM,

reported in a few-shot setting in Desai et al. [9], where the model is additionally

fine-tuned on around fifty examples (one sample per intent/slot tag).

In the timer domain, the model achieves a decent F1 score but very low EM

accuracy. Upon manual examination of the generated parses, we found that in almost

all utterances in this domain, there exists a span describing the type of timer such

as stopwatch or counter and it needs to be tagged as SL:METHOD TIMER. Concept-

Seq2Seq doesn’t tag any spans with the SL:METHOD TIMER tag since the description

method timer is too generic for it to learn the parsing rule. It however, does a
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Alarm

Utterance cancel all alarms for thursday
Gold [IN:DELETE ALARM cancel [SL:AMOUNT all SL:AMOUNT] alarms

[SL:ALARM NAME [IN:GET TIME [SL:DATE TIME for thursday

SL:DATE TIME] IN:GET TIME] SL:ALARM NAME] IN:DELETE ALARM]

Predicted [IN:DELETE ALARM cancel [SL:AMOUNT all SL:AMOUNT] alarms

[SL:DATE TIME for thursday SL:DATE TIME] IN:DELETE ALARM]

Utterance Set an alarm for 2 hours
Gold [IN:CREATE ALARM Set an alarm [SL:DATE TIME for 2 hours

SL:DATE TIME] IN:CREATE ALARM]

Predicted [IN:CREATE ALARM Set an alarm [SL:DATE TIME for 2 hours

SL:DATE TIME] IN:CREATE ALARM]

Timer

Utterance cancel all timers
Gold [IN:DELETE TIMER cancel [SL:AMOUNT all SL:AMOUNT]

[SL:METHOD TIMER timers SL:METHOD TIMER] IN:DELETE TIMER]

Predicted [IN:DELETE TIMER cancel [SL:AMOUNT all SL:AMOUNT] timers

IN:DELETE TIMER]

Utterance Set timer for 30 minutes and 20 seconds
Gold [IN:CREATE TIMER Set [SL:METHOD TIMER timer SL:METHOD TIMER]

[SL:DATE TIME for 30 minutes and 20 seconds SL:DATE TIME]

IN:CREATE TIMER]

Predicted [IN:CREATE TIMER Set timer [SL:DATE TIME for 30 minutes and

20 seconds SL:DATE TIME] IN:CREATE TIMER]

Music

Utterance This song is the pits
Gold [IN:DISLIKE MUSIC This [SL:MUSIC TYPE song SL:MUSIC TYPE] is

the pits IN:DISLIKE MUSIC]

Predicted [IN:CREATE PLAYLIST MUSIC [SL:MUSIC GENRE This song is the

pits SL:MUSIC PROVIDER NAME] IN:PLAY MUSIC]

Utterance Turn on music and play jazz
Gold [IN:PLAY MUSIC Turn on [SL:MUSIC TYPE music SL:MUSIC TYPE]

and play [SL:MUSIC GENRE jazz SL:MUSIC GENRE] IN:PLAY MUSIC]

Predicted [IN:CREATE PLAYLIST MUSIC Turn on [SL:MUSIC GENRE music and

play jazz SL:MUSIC GENRE] IN:CREATE PLAYLIST MUSIC]

Table 5.2. Some parses generated by Concept-Seq2Seq.
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good job figuring out the other slots and the intents such as IN:PAUSE TIMER or

IN:BEGIN TIMER which are adequately described in just their names.

Our model fails on the music domain. It learns to open and close tags but it mostly

generates gibberish tags. We believe this is due to the extreme semantic difference

between a domain such as music and the trained domains such as weather, timer,

alarm etc. Also, the tags names in music are sometimes too close to each other, for

example IN:PLAY MUSIC and IN:REPLAY MUSIC.

5.5 Remaining Challenges

Based on our initial results, we have identified some challenges to be addressed

going forward. We also briefly describe proposed solutions to address them.

• Special parsing rules: From the results on the timer domain in TOP, we see

that the data sometimes contains special parsing rules that can not be learned

from just the tag names alone. For example, there is no way for the model to link

the slot SL:METHOD TIMER to the spans timer or stopwatch with the description

method timer. Perhaps a better description would have been something such as

the type of timer such as stopwatch or counter. We believe adding such manual

descriptions and span examples to just the tag names would help the model do

better here. We plan to manually create these descriptions and extract some

high frequency examples for each of the tags.

• Semantic differences in new domains: We believe the main reason that

Concept-Seq2Seq currently doesn’t work on the music domain is the se-

mantic gap between music and the other domains using during training. As

described, we believe the Wikiwiki pre-training scheme will address this issue

by training on a lot of generic concepts.
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<CLS> artist         name        <SEP> play        country      songs          by           Taylor        Swift

Pretrained QA Encoder

<CLS> genre      <SEP> play        country      songs          by           Taylor        Swift
<CLS> service      <SEP> play        country      songs          by           Taylor        Swift

pa
ra
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lly

X X XX

X X XX X
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Figure 5.3. Proposed zero-shot extractive QA-style approach for domain adaptation.
We plan to explore this approach if we don’t achieve the expected performance from
Concept-Seq2Seq

• Speed: Right now, our decoder in Concept-Seq2Seq is fully auto-regressive

i.e. it generates tokens one by one. The inference speed is similar to Seq2Seq-

Ptr but for real-life applications in a voice assistant, we need to be even faster.

To improve the speed of decoding, we plan to explore schemes such as insertion

decoding [96], where tag tokens are inserted into their place, or parallel decoding

[18] with a length module, where all the tokens are decoded at once, after a

length module predicts the target length.

• Alternate approach: If the proposed approach doesn’t achieve expected per-

formance, we alternatively plan to explore this problem of zero-shot domain

adaptation for semantic parsing using question-answering (QA) style models.

A brief sketch of this approach is as follows: Train a extractive QA model with

intent and slot descriptions posed as questions, the utterances as context, and

the gold-span for the intent or slot tag as the answer. During inference with

tags from a new domain, find the highest scoring spans for each new tag posed

as a question and combine the results. Figure 5.3 shows this approach.
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5.6 Research Plan

• Concept-Seq2Seq design and evaluation

Timeline: May 2022, In Progress

Priority: High

• Wikiwiki data processing for pre-training

Timeline: May 2022, In Progress

Priority: High

• Manual schema descriptions, example creation

Timeline: May 2022

Priority: High

• Concept pre-training

Timeline: May 2022

Priority: High

• Non-autoregressive decoding for speed

Timeline: June 2022

Priority: Medium

• Alternate QA-style approach

Timeline: June-July 2022

Priority: Low

• Dissertation writing

Timeline: July 2022

Priority: High

• Dissertation Defense

Timeline: August 2022

Priority: High
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CHAPTER 6

CONCLUSION

In this dissertation, I explore various approaches to improve low resource lan-

guage understanding in voice assistants. We identify aspects of the current language

understanding architecture and their data-related challenges, and propose novel archi-

tectures based on sequence-to-sequence models, large-scale pretraining, and transfer

learning to solve those challenges.

In Chapter 2, we describe a state-of-the-art natural language understanding sys-

tem, Seq2Seq-Ptr, to solve compositional task-oriented semantic parsing, the bed-

rock intelligence system in voice assistants. Our approach uses a sequence-to-sequence

model, initialized with a large pre-trained encoder and augmented with a pointer

generator network, and has been shown to achieve state-of-the-art results on popu-

lar semantic parsing datasets such as TOP, ATIS, and SNIPS. This work laid the

foundation for future low-resource work.

Chapter 3 describes an end-to-end spoken language understanding system that

replaces the current two-stage pipelined ASR-NLU architecture. Our system, called

AT-AT, directly takes speech as input and produces a semantic parse, without gen-

erating an intermediate text transcription. It uses sequence-to-sequence models, ini-

tialized with pre-trained checkpoints, and creates a shared audio-text representation

space by training on multiple speech-to-text and text-to-text tasks. We show that

AT-AT outperforms previous system, including pipelined ones, on spoken language

understanding on datasets such as SNIPS and FluentSpeech. It is also shown to be

capable of performing zeroshot end-to-end semantic parsing by only using a few text-
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to-text annotated examples and no speech data by taking advantage of its shared

audio-text hidden space.

In the final chapters, we cover approaches for few-shot and zero-shot semantic

parsing. In Chapter 4, we describe approaches to perform few-shot semantic parsing

by training large sequence-to-sequence semantic parsing models on very few annotated

examples and carefully crafted auxiliary tasks from other easily available data. Our

approach also relies on naturalization of the target semantic parse i.e. converting the

target logical form into a controlled fragment of natural language. These approaches

are hence best applied to semantic parsing datasets that have a well-describe grammar

for the target logical forms such as database queries or food orders.

In Chapter 5, we explore few-shot and zero-shot approaches for domain adaptation

in semantic parsing i.e. adapting the model to parse data from new domains with

new logical form features. We propose a model called Concept-Seq2Seq, based on

Seq2Seq-Ptr, and augmented with a concept encoder that encodes concepts from

new domains. We also propose a pre-training scheme for our model to transfer concept

knowledge from Wikipedia data. We show promising initial results and describe the

remaining challenges, and next steps to evaluate and analyze our approach.

Together, our approaches lay the foundation for a comprehensive architecture and

training scheme for low-resource language understanding. We show how to leverage

the power or large sequence-to-sequence models and transfer learning to build robust

and high-performing language understanding systems.

77



APPENDIX A

AT-AT DETAILS

A.1 Data Processing

This section describes the data processing that is done on different datasets to

obtain target SLU sequences in the required format.

A.1.1 SNIPS Audio and Internal Datasets

These datasets contain simple utterances with a single intent and consecutive non-

overlapping slots. The SLU hypothesis consists of a single intent and consecutive, non-

overlapping words tagged as slots. While this hypothesis prediction is traditionally

solved as a joint intent classification and slot-filling task, it can be solved as a sequence

generation task. The hypothesis is converted into a target sequence with intents and

slot tags enclosing the spoken English words. An example of this conversion is shown

below.

Audio : Play songs by Iron Maiden
Intent: PlayMusic
Slots : Other Other Other ArtistName ArtistName
Target: PlayMusic( Play songs by ArtistName(

Iron Maiden )ArtistName )PlayMusic

A.1.2 Facebook TOP

The TOP dataset consists of complex utterances with multiple nested intents and

slots. The dataset already consists of the target hypothesis in a target sequence

format. We simply add custom end brackets instead of one single closing bracket to

end all slots. An example from the TOP dataset in the final format is given below.
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Audio : How far is the coffee shop
Target: GetDistance( How far is Destination(

GetRestaurantLocation( the TypeFood(
coffee )TypeFood shop )GetRestaurantLocation
)Destination )GetDistance

A.1.3 FluentSpeech

The FluentSpeech dataset consists of utterances where the SLU hypothesis is a

3-tuple containing an action, object, and a location. It was initially solved as a 3-

way classification task. We use some fixed rules to convert this 3-tuple into a tagged

sequence of the desired format as described with the previous datasets.

• The action tags are like intent tags for us. We wrap the whole transcript with

action open and end tags.

• The location is usually found in the transcript. We tag the appropriate word

with location open and end tags. The exception is when the location is wash-

room and the transcript word is bathroom. We manually account for these

examples.

• For the object word, if it exists in the transcript, is is tagged with object open

and end tags. If it doesn’t, we wrap the transcript with open and end tags

corresponding to the object token. Examples given below will make these rules

more clear.

Audio : Turn on the kitchen lights
Tuple : activate, lights, kitchen
Target: Activate( Turn on the Location( kitchen

)Location Object( lights )Object )Activate

Audio : Far too loud
Tuple : decrease, volume, none
Target: Decrease( Volume( Far too loud )Volume

)Decrease

Audio : Turn up the bathroom temperature
Tuple : increase, heat, washroom
Target: Increase( Heat( turn up the Location(
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bathroom )Location temperature )Heat
)Increase

A.2 Synthetic Audio Generation

For our zeroshot end-to-end experiments, we used models trained on synthetically

generated audio data as one of our baselines. We generate synthetic audio for the

internal books dataset and the TOP dataset. We used an external TTS system called

Amazon Polly1 for this. Polly is an AWS service that can be used to generate synthetic

audio given a transcript, with options for different speakers, accents, and generation

engines.

For our generation, we use a set of speakers that have US English accents and

a neural engine. This set consists of the following voices: Joanna, Matthew, Salli,

Justin, Kendra, Joey, Kimberly, Ivy, and Kevin. For each utterance in the dataset,

we randomly choose a speaker from this set and synthesize speech from the transcript.

Once the audio is generated, we process it in the same way as real audio, by extracting

80-dim log-filterbank features.

1https://aws.amazon.com/polly/
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APPENDIX B

NATURALIZED SEMANTIC PARSING DETAILS

B.1 Dataset Details

B.1.1 Pizza

Pizza1 is a recently introduced dataset consisting of English utterances that rep-

resent orders of pizzas and drinks. The target parse is a LF that specifies the various

components of the relevant pizza and drink orders. Examples from this dataset can

be seen in Table B.1. Since our system uses canonical forms as targets instead of

LFs, we defined a canonicalization scheme for pizza and drink orders via a rule-based

parser that can go from the canonical form to the LF and conversely (details in the

next section).

The original Pizza dataset contains 2.5M synthetic training examples, 348 dev

examples, and 1357 test examples. For our experiments, we ignore the synthetic

training data and use the 348 dev examples as the training set to choose sets of 16,

32, and 48 examples for low-resource training.

To create the mask-infilling data, we include utterances from the unselected exam-

ples. For the denoising task, we randomly sample 10k target parses from the original

synthetic training set of 2.5M examples and construct their canonical forms. This is

akin to generating random pizza orders since that is how the synthetic dataset was

created in the first place.

1https://github.com/amazon-research/pizza-semantic-parsing-dataset
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Utterance Canonical Form

get me three pepsis five medium diet
sprites and a coke

i want one coke , five medium diet
sprite , and three pepsi

i need a medium ham pizza with extra
cheese and pesto

i want one medium pizza with extra
cheese , ham , and pesto

can i have a large pizza along with
onions tuna and add some thin crust

i want one large thin crust pizza with
onions and tuna

good evening how are you do me a favor
and get me a large pizza with ham and
peppers i definitely do not want thin
crust thanks

i want one large pizza with ham and
peppers , not thin crust style

i wish to have one pie in large size
along with olives and chicken but with-
out ham

i want one large pizza with chicken and
olives and no ham

Table B.1. Example utterances and canonical form for the Pizza dataset

B.1.2 Overnight

Overnight is a popular semantic parsing dataset that consists of 13,682 examples

across eight domains. The task is to convert natural language utterances to database

queries, which are then executed on a fixed database to obtain the results for the

user utterances. This dataset was originally generated by first creating canonical

utterances and their parses (database queries) and then paraphrasing the canonical

utterances using crowd sourcing to obtain the natural utterance. As a result, we have

access to the utterance, canonical form and the corresponding database query for all

examples. An example from the basketball domain is the utterance which team did

kobe bryant play on in 2004, whose canonical target is team of player kobe bryant

whose season is 2004.

Just like with the Pizza dataset, we use the remaining utterances to create mask-

infilling data. To generate queries for the denoising task, we use the SEMPRE toolkit,

upon which the Overnight dataset was built, to generate sample queries for each

domain from its canonical grammar, consisting of around 100 general and 20-30 per-

domain rules. For paraphrase augmentation, for both datasets, we generate four

82



paraphrases for each utterance in the training set. We use the BART-Large model

trained on ParaNMT data and take the top four sequences from beam search decoding

at inference.

For constrained decoding, we construct a large trie that contains all the canonical

form sequences, and use it to look up valid next tokens given a prefix.

B.2 Pizza Canonical Forms

The Pizza dataset consists of natural-language utterances representing pizza (and

/ or drink) orders, along with corresponding LFs. For our experiments, however,

we needed natural-language sentences as the target outputs. Unlike the Overnight

dataset, Pizza doesn’t come with a canonical-form grammar. Accordingly, we created

our own grammar and rules to convert LFs to and from canonical utterances. We

describe these below.

Every target LF in the Pizza dataset consists of one or more pizza and/or drink

orders. Each pizza order contains various attributes such as number, size, style,

toppings, and so on. Some of these attributes, such as complex toppings (which

contain a topping and a quantity qualifier, like extra cheese) are nested. Likewise,

each drink order has attributes such as number, size or volume, container type (can

or bottle), and so on. Given some LF tree t with orders o1, o2 . . . on, we express

the canonical form of t, CF (t), in terms of the canonical forms of the individual

components of t as follows:

CF (t) = i want CF (o1), CF (o2), . . . and CF (on)

Each pizza/drink component order is further naturalized to create the canonical

form sequence specified by the above expression. For a pizza order, this string captures

the pizza attributes, while for a drink order it captures the drink attributes. The
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following expressions roughly describe how these strings are laid out for a pizza order

p and a drink order d in terms of their various attributes, represented in angle brackets

⟨⟩ (multi-valued attributes have a starred superscript).

CF (p) = ⟨number⟩⟨size⟩⟨style⟩∗pizza with

⟨topping⟩∗, and no ⟨topping⟩∗,

not ⟨style⟩∗style

CF (d) = ⟨number⟩⟨size⟩⟨volume⟩

⟨drink name⟩⟨container⟩

We simply skip filling an attribute value if it doesn’t exist for an order. For further

nesting such as with complex toppings, the canonical string is a concatenation of the

values of all its attributes. The constructed canonical forms for all examples in the

train, dev, and test sets are available in the data zip file. Table B.1 provides a few

sample canonical forms and their corresponding utterances for reference.

B.3 Further experimental details

We provide a few more details on our experimental settings here. Note that we

didn’t perform extensive hyper-parameter tuning. This section is simply to serve as

a guideline for reproducing results reported in this paper.

B.3.1 Auxiliary Tasks

For the mask infilling task, we use all the available unannotated utterances to

create source and target sequences. For our experiments, we upsample by 10× and

mask a random span of 25% tokens in each example. So for the pizza dataset for

example, the size of this data in the n = 16 setting is (348 − 16) × 10 = 3320. The
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same holds for the Overnight dataset. The mask infilling source and target sequence

files for both the Pizza and Overnight datasets and all the reported experimental

settings are available in the data zip file.

For the denoising task, we sample 10k random LFs from the synthetic training

data for the Pizza data and apply noise. For the Overnight dataset, we use SEMPRE

to generate canonical forms and upsample them until they reach 10k and then apply

noise. So the dataset size is always 10K in all our experiments. The source and target

sequence files for the denoising task are available in the data zip file.

B.3.2 Computational Resources

We train our BART Paraphrasing model on a 8x32GB GPU. We use a large

GPU here since the training dataset contains around 5 million examples. For all the

semantic parsing models reported in the paper, both the baselines and our models,

we use a single 16GB GPU.

B.4 Full Analysis

In this section we analyze our results in more detail and also explain various

design choices and the empirical results that motivated them. For most of the analysis

experiments, we use the Pizza dataset, since, as the Results Section shows, the results

mostly generalize across both datasets. The Pizza dataset also has a larger test set

than any of the Overnight domains, which allowed us to see performance differences

better.

B.4.1 Joint training vs Two-stage Fine-Tuning

Our approach employs joint training, where we combine the auxiliary task data

with the annotated data and jointly train our model. Our intuition here was that

this technique would make the training more robust and act as a regularizer. One

could instead use the auxiliary tasks to pretrain the model and then fine-tune it on
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Unordered EM Accuracy

n=16 n=32 n=48

Two-stage Fine-Tuning 43.66 59.47 67.87
Joint Training 42.23 64.70 70.30

Table B.2. Comparing joint training to two-stage fine-tuning.

just the annotated data. We found that this two-stage training does not improve the

model. Table B.2 reports the results across the three data sizes on the pizza dataset

for the JT and 2-stage fine-tuned models. We see a noticeable drop in performance

with the extra fine-tuning step for 32 and 48 examples, and no significant boost for

16 examples.

B.4.2 Importance of the canonical form

We found canonical targets to work better in low-resource settings than LF targets,

which stands to reason given that they are natural language sentences that can better

leverage the pretraining of LMs. Moreover, for our JT technique, the canonical form

provides us with an easy way to add meaningful noise without modifying the content

tokens for the denoising auxiliary task. We can simply perform token level operations

without worrying about the target structure. However, if the targets are parse trees,

adding noise is trickier, since most of the tokens in the parse represent content and

meaningful operations need to be performed at the tree level. Even more importantly,

the target sequences for the mask prediction task are in natural language and are

better aligned with the canonical form targets than the parse trees. This potentially

allows for better knowledge transfer during joint training.

We performed a JT experiment with a model that predicts LFs instead of canon-

ical forms for the Pizza dataset. We created the source sequences for the denoising

auxiliary task using tree-level noise operations such as switching entities, dropping

brackets, and inserting random tokens. We found that the resulting models achieved
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Unordered EM Accuracy

n=16 n=32 n=48

Logical Form 19.90 57.26 59.10
Canonical Form 42.23 64.70 70.30

Table B.3. Comparing canonical form targets to parse trees for the denoising task.

Unordered EM Accuracy

n=16 n=32 n=48

Denoising 42.23 64.70 70.30
Synthetic Utterances 72.37 78.11 82.31

Table B.4. Comparing denoising to synthetically generated semantic parsing as the
auxiliary task.

significantly lower scores than the models that use canonical targets. Table B.3 re-

ports these numbers. The numbers for LF targets are actually very close to those

of their base architectures (for LF-based BART). So, as hypothesized, directly us-

ing LF trees as targets is not conducive to our joint training approach. We require

canonical-form targets in the base architecture for JT to work effectively.

B.4.3 Other auxiliary tasks apart from denoising

The goal of our auxiliary tasks was to provide the model with a challenging objec-

tive. Using unlabeled utterances, we create the mask infilling task in the style of the

BART pretraining objective. This is a standard domain adaptation technique that is

well explored in the literature.

To train the decoder, we use the synthetically generated target sequences so that

the decoder can train on, and learn to generate, a variety of valid canonical forms.

To create a challenge for the decoder, we noise the targets to obtain corrupted source

sequences and create a denoising task. This is a simple task that can be constructed

to provide the decoder a challenge without requiring any external effort.
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There are other possible tasks. One could create rules to generate synthetic ut-

terances given the target parses. This synthetic data could then be used to train the

decoder. That approach, however, requires manual effort and depends on the quality

and diversity of the synthetic data. For Pizza, we already have access to synthetic

data, since the entire training set is synthetic. Assuming we have access to a system

that can generate such synthetic utterances given randomly generated target parses,

we could replace our denoising task with the synthetic examples. We perform this

experiment to compare these two auxiliary tasks. Table B.4 shows these results. The

synthetic parsing auxiliary task performs better than denoising but, as mentioned

earlier, it requires a lot of manual effort to create a synthetic utterance grammar.

Our JT approach is directly applicable to both tasks.

88



BIBLIOGRAPHY

[1] Bapna, Ankur, Tur, Gokhan, Hakkani-Tur, Dilek, and Heck, Larry. To-
wards zero-shot frame semantic parsing for domain scaling. arXiv preprint
arXiv:1707.02363 (2017).

[2] Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic parsing on Freebase
from question-answer pairs. In Empirical Methods in Natural Language Process-
ing (EMNLP) (2013).

[3] Berant, Jonathan, and Liang, Percy. Semantic parsing via paraphrasing. In ACL
(1) (2014), ACL (Association for Computer Linguistics), pp. 1415–1425.

[4] Brown, Tom B, Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan,
Jared, Dhariwal, Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish,
Askell, Amanda, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[5] Cao, Ruisheng, Zhu, Su, Liu, Chen, Li, Jieyu, and Yu, Kai. Semantic parsing
with dual learning. arXiv preprint arXiv:1907.05343 (2019).

[6] Chen, Xilun, Ghoshal, Asish, Mehdad, Yashar, Zettlemoyer, Luke, and Gupta,
Sonal. Low-resource domain adaptation for compositional task-oriented semantic
parsing. arXiv preprint arXiv:2010.03546 (2020).

[7] Coucke, Alice, Saade, Alaa, Ball, Adrien, Bluche, Théodore, Caulier, Alexan-
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